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This Talk

𝑝𝑜𝑙𝑦(log log 𝑛) round algorithms for approximate 
shortest paths in the Congested Clique
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This Talk

𝑝𝑜𝑙𝑦(log log 𝑛) round algorithms for approximate 
shortest paths in the Congested Clique

- Background & our results

- Techniques:
- Near-additive emulators

- Distance sensitive toolkit
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Background & Our 
Results



Distance Computation

• All-pairs shortest paths (APSP)

• Single-source shortest paths (SSSP) 

• Multi-source shortest paths (MSSP)
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• 𝑛 vertices

• Synchronous rounds, Θ(log 𝑛)-bit messages 

• All-to-All communication

• Input and output are local

Input GraphCommunication Network
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The Congested Clique Model



Previous Work

• Polynomial time algorithms for exact APSP based on 
matrix multiplication [Censor-Hillel et al. 15, Le Gall 16]
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Previous Work

• Polynomial time algorithms for exact APSP based on 
matrix multiplication [Censor-Hillel et al. 15, Le Gall 16]

Round 
Complexity

Variant

෨𝑂 𝑛1/3 weighted directed 

𝑂 𝑛0.158 unweighted undirected 
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Previous Work

• Polynomial time algorithms for exact APSP based on 
matrix multiplication [Censor-Hillel et al. 15, Le Gall 16]

• Poly-logarithmic algorithms for approximate
shortest paths [Becker et al. 17, Censor-Hillel et al. 19]
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Round Complexity Problem Reference

𝑂 𝜖−3polylog 𝑛 1 + 𝜖 -SSSP [Becker, Karrenbauer, 
Krinninger, Lenzen ‘17]

𝑂 log2𝑛/𝜖 1 + 𝜖 -MSSP
with 𝑂( 𝑛) sources [Censor-Hillel, D, 

Korhonen, Leitersdorf, 
‘19]

𝑂 log2𝑛/𝜖 3 + 𝜖 -APSP

𝑂 log2𝑛/𝜖 2 + 𝜖 -unweighted 
APSP
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Previous Work: Approximations

• All results are for weighted undirected graphs, 
unless specified otherwise



Round Complexity Problem Reference

𝑂 𝜖−3polylog 𝑛 1 + 𝜖 -SSSP [Becker, Karrenbauer, 
Krinninger, Lenzen ‘17]

𝑂 log2𝑛/𝜖 1 + 𝜖 -MSSP
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Previous Work: Approximations

Can we get faster algorithms?



Distances in the Clique

Can we get faster algorithms?
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Distances in the Clique

Can we get faster algorithms?

• In the matrix multiplication algorithms, in iteration 𝑖
we deal with paths of 2𝑖 edges
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Distances in the Clique

Can we get faster algorithms?

• In the matrix multiplication algorithms, in iteration 𝑖
we deal with paths of 2𝑖 edges

• We need log 𝑛 iterations
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Our Results 

Unweighted undirected graphs:
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𝑝𝑜𝑙𝑦(log log 𝑛) • 1 + 𝜖 -MSSP with 𝑂(𝑛1/2) sources
• 2 + 𝜖 -APSP



Our Results 

Unweighted undirected graphs:
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𝑝𝑜𝑙𝑦(log log 𝑛) • 1 + 𝜖 -MSSP with 𝑂(𝑛1/2) sources
• 2 + 𝜖 -APSP

𝑝𝑜𝑙𝑦(log 𝑛) • 1 + 𝜖 -MSSP with 𝑂(𝑛1/2) sources
• 2 + 𝜖 -APSP

Previous work:



Our Results 

Unweighted undirected graphs:
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𝑝𝑜𝑙𝑦(log log 𝑛) • 1 + 𝜖 -MSSP with 𝑂(𝑛1/2) sources
• 2 + 𝜖 -APSP

2 − 𝜖 -APSP implies 
Matrix Multiplication

[Dor, Halperin, Zwick ‘00
Korhonen, Suomela ‘18]

The APSP approximation is near-tight:



Techniques



Our Techniques
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Long Paths Short Paths

Near-additive Emulators Distance Sensitive Toolkit

Shortest Paths



Our Techniques
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Long Paths Short Paths

Near-additive Emulators Distance Sensitive Toolkit

Shortest Paths



How to Get Faster Algorithms?

• 𝑝𝑜𝑙𝑦(log 𝑛) looks like a natural barrier
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How to Get Faster Algorithms?

• 𝑝𝑜𝑙𝑦(log 𝑛) looks like a natural barrier

• But maybe we can improve the approximation?
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APSP Approximation

• (2 + 𝜖)-approximation for APSP:

𝛿(𝑢, 𝑣) ≤ (2 + 𝜖)𝑑(𝑢, 𝑣)
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APSP Approximation

• (2 + 𝜖)-approximation for APSP:

𝛿(𝑢, 𝑣) ≤ (2 + 𝜖)𝑑(𝑢, 𝑣)

• (1 + 𝜖, 𝛽)-approximation:

𝛿 𝑢, 𝑣 ≤ (1 + 𝜖)𝑑 𝑢, 𝑣 + 𝛽
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APSP Approximation

• (2 + 𝜖)-approximation for APSP:

𝛿(𝑢, 𝑣) ≤ (2 + 𝜖)𝑑(𝑢, 𝑣)

• (1 + 𝜖, 𝛽)-approximation:

𝛿 𝑢, 𝑣 ≤ (1 + 𝜖)𝑑 𝑢, 𝑣 + 𝛽

Much better for long distances!
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Near-Additive Emulator

A sparse graph 𝐻 such that for all 𝑢, 𝑣:
𝑑(𝑢, 𝑣) ≤ 𝑑𝐻 𝑢, 𝑣 ≤ 1 + 𝜖 𝑑 𝑢, 𝑣 + 𝛽
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Near-Additive Emulator

A sparse graph 𝐻 such that for all 𝑢, 𝑣:
𝑑(𝑢, 𝑣) ≤ 𝑑𝐻 𝑢, 𝑣 ≤ 1 + 𝜖 𝑑 𝑢, 𝑣 + 𝛽

Build near-additive 
emulator with 

𝑂(𝑛 log log 𝑛) edges

Collect it by all vertices 
in 𝑂(log log 𝑛) rounds
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Near-Additive Emulator

A sparse graph 𝐻 such that for all 𝑢, 𝑣:
𝑑(𝑢, 𝑣) ≤ 𝑑𝐻 𝑢, 𝑣 ≤ 1 + 𝜖 𝑑 𝑢, 𝑣 + 𝛽

Build near-additive 
emulator with 

𝑂(𝑛 log log 𝑛) edges

Collect it by all vertices 
in 𝑂(log log 𝑛) rounds

1 + 𝜖, 𝛽 -APSP, for 𝛽 = 𝑂
log log 𝑛

𝜖

log log 𝑛
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Shortest Paths via Emulators

1 + 𝜖, 𝛽 -APSP, 𝛽 = 𝑂
log log 𝑛

𝜖

log log 𝑛

If 𝑑 𝑢, 𝑣 = Ω 𝛽/𝜖 : 1 + Θ(𝜖) -approximation

Near-additive emulators 
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Shortest Paths via Emulators

1 + 𝜖, 𝛽 -APSP, 𝛽 = 𝑂
log log 𝑛

𝜖

log log 𝑛

If 𝑑 𝑢, 𝑣 = Ω 𝛽/𝜖 : 1 + Θ(𝜖) -approximation

Near-additive emulators 

Left with short paths of length 𝑡 = 𝑂(𝛽/𝜖)
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Shortest Paths via Emulators

Left with short paths of length 𝑡 = 𝑂(𝛽/𝜖)
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Requires 𝑝𝑜𝑙𝑦 log 𝑡 = 𝑝𝑜𝑙𝑦(log log 𝑛) time!



Shortest Paths via Emulators
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Long Paths: Ω 𝛽/𝜖 Short Paths: O 𝛽/𝜖

Near-additive Emulators: 
1 + Θ(𝜖) -approximation

Distance Sensitive Toolkit: 

𝑝𝑜𝑙𝑦 log
𝛽

𝜖
time

Shortest Paths



Shortest Paths via Emulators
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Long Paths: Ω 𝛽/𝜖 Short Paths: O 𝛽/𝜖

Near-additive Emulators: 
1 + Θ(𝜖) -approximation

Distance Sensitive Toolkit: 

𝑝𝑜𝑙𝑦 log
𝛽

𝜖
time

Shortest Paths



Distance Tools
[Censor-Hillel, D, Korhonen, Leitersdorf, ‘19]

• 𝑘-nearest: for each 
vertex, compute 
distances to 𝑘
nearest vertices

𝑣

• MSSP: for each vertex, 
compute (1 + 𝜖)-
approximate distances to 
the set 𝑆

S

V

v
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Distance Tools
[Censor-Hillel, D, Korhonen, Leitersdorf, ‘19]

• 𝑘-nearest: for each 
vertex, compute 
distances to 𝑘
nearest vertices

𝑣

• MSSP: for each vertex, 
compute (1 + 𝜖)-
approximate distances to 
the set 𝑆

S

V

v
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Can be implemented in 
𝑝𝑜𝑙𝑦 log 𝑛 time



Distance Sensitive Tools

• (𝑘, 𝑡)-nearest: for 
each vertex, 
compute distances 
to 𝑘 nearest vertices 
of distance at most 𝑡

𝑣

• Bounded MSSP: for each 
vertex, compute (1 + 𝜖)-
approximate distances to 
vertices in 𝑆 of distance at 
most 𝑡

S

V

v
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Distance Sensitive Tools

• (𝑘, 𝑡)-nearest: for 
each vertex, 
compute distances 
to 𝑘 nearest vertices 
of distance at most 𝑡

𝑣

• Bounded MSSP: for each 
vertex, compute (1 + 𝜖)-
approximate distances to 
vertices in 𝑆 of distance at 
most 𝑡

S

V

v
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Can be implemented in 
𝑝𝑜𝑙𝑦 log 𝑡 = 𝑝𝑜𝑙𝑦(log log 𝑛) time



Shortest Paths via Emulators
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Long Paths: Ω 𝛽/𝜖 Short Paths: O 𝛽/𝜖

Near-additive Emulators: 
1 + Θ(𝜖) -approximation

Distance Sensitive Toolkit: 

𝑝𝑜𝑙𝑦 log
𝛽

𝜖
time

Shortest Paths



Shortest Paths via Emulators

39

Long Paths: Ω 𝛽/𝜖 Short Paths: O 𝛽/𝜖

Near-additive Emulators: 
1 + Θ(𝜖) -approximation

Distance Sensitive Toolkit: 

𝑝𝑜𝑙𝑦 log
𝛽

𝜖
time

Shortest Paths



Near-Additive Emulators

• Each vertex inspects its  
t = 𝑂 𝛽/𝜖 -radius ball, 
and adds to the 
emulator edges to some 
of these vertices

v

𝑡
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Near-Additive Emulators

• Each vertex inspects its  
t = 𝑂 𝛽/𝜖 -radius ball, 
and adds to the 
emulator edges to some 
of these vertices

• Can be implemented in 
𝑝𝑜𝑙𝑦 log 𝑡 =
𝑝𝑜𝑙𝑦(log log 𝑛) time
using the distance 
sensitive toolkit 

v

𝑡

41



We construct: 

1 + 𝜖, 𝑂
𝑟

𝜖

𝑟−1
-emulator with 𝑂 𝑟𝑛1+1/2

𝑟
edges 

• Choosing 𝑟 = log log 𝑛 gives:

1 + 𝜖, 𝛽 -emulator with 𝑂 𝑛 log log 𝑛 edges,

where  𝛽 = 𝑂
log log 𝑛

𝜖

log log 𝑛
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Near-Additive Emulators
Inspired by [Elkin-Neiman, 2018] and [Thorup-Zwick, 2006]



• Define sampled subsets 𝑉 = 𝑆0 ⊇ 𝑆1 ⊇ ⋯ ⊇ 𝑆𝑟 ⊇ 𝑆𝑟+1 = ∅

• 𝑆𝑖 ← 𝑆𝑎𝑚𝑝𝑙𝑒(𝑆𝑖−1, 𝑝𝑖)

The choice of 𝑝𝑖 determines the size of the emulator.
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Near-Additive Emulators



𝑆1 ← 𝑆𝑎𝑚𝑝𝑙𝑒(𝑉, 𝑝1)
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𝑆1 ← 𝑆𝑎𝑚𝑝𝑙𝑒(𝑉, 𝑝1)

𝑆2 ← 𝑆𝑎𝑚𝑝𝑙𝑒(𝑆1, 𝑝2)
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• Define sampled subsets 𝑉 = 𝑆0 ⊇ 𝑆1 ⊇ ⋯ ⊇ 𝑆𝑟 ⊇ 𝑆𝑟+1 = ∅

• 𝑆𝑖 ← 𝑆𝑎𝑚𝑝𝑙𝑒(𝑆𝑖−1, 𝑝𝑖)

A vertex in  𝒗 ∈ 𝑺𝒊 looks at the ball of radius 𝜹𝒊 = Θ(1/𝜖𝑖)
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Near-Additive Emulators

𝜹𝒊

𝑣

Is there a vertex in 𝑩 𝒗, 𝜹𝒊 ∩ 𝑺𝒊+𝟏? 



A vertex in 𝒗 ∈ 𝑺𝒊 looks at the ball of radius 𝜹𝒊 = Θ(1/𝜖𝑖)
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Near-Additive Emulators

𝜹𝒊

𝑣

Is there a vertex in 𝑩 𝒗, 𝜹𝒊 ∩ 𝑺𝒊+𝟏? 

Yes: add an edge to 
such vertex

No: add edges to all 
vertices in 𝐵 𝑣, 𝛿𝑖 ∩ 𝑆𝑖

𝜹𝒊

𝑣



A vertex in 𝒗 ∈ 𝑺𝒊 looks at the ball of radius 𝜹𝒊 = Θ(1/𝜖𝑖)
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Near-Additive Emulators

𝜹𝒊

𝑣

Is there a vertex in 𝑩 𝒗, 𝜹𝒊 ∩ 𝑺𝒊+𝟏? 

Yes: add an edge to 
such vertex

No: add edges to all 
vertices in 𝐵 𝑣, 𝛿𝑖 ∩ 𝑆𝑖

𝜹𝒊

𝑣



A vertex in 𝒗 ∈ 𝑺𝒊 looks at the ball of radius 𝜹𝒊 = Θ(1/𝜖𝑖)
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Near-Additive Emulators

𝜹𝒊

𝑣

Is there a vertex in 𝑩 𝒗, 𝜹𝒊 ∩ 𝑺𝒊+𝟏? 

Yes: add an edge to 
such vertex

No: add edges to all 
vertices in 𝐵 𝑣, 𝛿𝑖 ∩ 𝑆𝑖

𝜹𝒊

𝑣



• Vertices inspect balls of radius 𝜹𝒊

• Using the distance sensitive toolkit can be done in 
𝑝𝑜𝑙𝑦(log 𝛿𝑖) rounds 
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Near-Additive Emulators

𝜹𝒊

𝑣



• 𝑖-clustered vertex: there is a vertex in 𝑆𝑖 close-by

Lemma: if all vertices in the shortest 𝑢 − 𝑣 path are at most 

𝑖-clustered, 𝑑𝐻(𝑢, 𝑣) ≤ (1 + Θ 𝜖𝑖 )𝑑 𝑢, 𝑣 + Θ
1

𝜖𝑖−1
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Stretch Analysis

𝜹𝒊

𝑣



• 𝑖-clustered vertex: there is a vertex in 𝑆𝑖 close-by

Lemma: if all vertices in the shortest 𝑢 − 𝑣 path are at most 

𝑖-clustered, 𝑑𝐻(𝑢, 𝑣) ≤ (1 + Θ 𝜖𝑖 )𝑑 𝑢, 𝑣 + Θ
1

𝜖𝑖−1

• Leads to 1 + Θ 𝜖𝑟 , Θ
1

𝜖𝑟−1
stretch
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Stretch Analysis



• 𝑖-clustered vertex: there is a vertex in 𝑆𝑖 close-by

Lemma: if all vertices in the shortest 𝑢 − 𝑣 path are at most 

𝑖-clustered, 𝑑𝐻(𝑢, 𝑣) ≤ (1 + Θ 𝜖𝑖 )𝑑 𝑢, 𝑣 + Θ
1

𝜖𝑖−1

• Leads to 1 + Θ 𝜖𝑟 , Θ
1

𝜖𝑟−1
stretch

• After rescaling: 1 + 𝜖, 𝑂
𝑟

𝜖

𝑟−1
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Stretch Analysis



• 𝑖-clustered vertex: there is a vertex in 𝑆𝑖 close-by

Lemma: if all vertices in the shortest 𝑢 − 𝑣 path are at most 

𝑖-clustered, 𝑑𝐻(𝑢, 𝑣) ≤ (1 + Θ 𝜖𝑖 )𝑑 𝑢, 𝑣 + Θ
1

𝜖𝑖−1

• Leads to 1 + Θ 𝜖𝑟 , Θ
1

𝜖𝑟−1
stretch

• After rescaling: 1 + 𝜖, 𝑂
log log 𝑛

𝜖

log log 𝑛
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Stretch Analysis



Shortest Paths via Emulators
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Long Paths: Ω 𝛽/𝜖 Short Paths: O 𝛽/𝜖

Near-additive Emulators: 
1 + Θ(𝜖) -approximation

Distance Sensitive Toolkit: 

𝑝𝑜𝑙𝑦 log
𝛽

𝜖
time

Shortest Paths



Conclusion

Near-additive Emulators Distance Sensitive Toolkit

Long Paths Short Paths

𝑝𝑜𝑙𝑦(log log 𝑛) 1 + 𝜖 -MSSP with 𝑂(𝑛1/2) sources
In unweighted graphs

𝑝𝑜𝑙𝑦(log log 𝑛) 2 + 𝜖 -APSP in unweighted graphs
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Summary

𝑝𝑜𝑙𝑦(log log 𝑛) round algorithms for approximate 
shortest paths in the Congested Clique

𝑝𝑜𝑙𝑦(log log 𝑛) • 1 + 𝜖 -MSSP with 𝑂(𝑛1/2) sources
• 2 + 𝜖 -APSP

• 1 + 𝜖, 𝛽 -APSP, 𝛽 = 𝑂
log log 𝑛

𝜖

log log 𝑛

Unweighted graphs:

57



Open Questions
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• Faster algorithms

• Weighted APSP 

• Directed/exact shortest paths


