
Exponentially Faster
Shortest Paths in the

Congested Clique

Michal Dory (Technion), Merav Parter (Weizmann Institute)

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement no. 755839

This Talk

𝑝𝑜𝑙𝑦(log log 𝑛) round algorithms for approximate
shortest paths in the Congested Clique

2

This Talk

𝑝𝑜𝑙𝑦(log log 𝑛) round algorithms for approximate
shortest paths in the Congested Clique

- Background & our results

- Techniques:
- Near-additive emulators

- Distance sensitive toolkit

3

Background & Our
Results

Distance Computation

• All-pairs shortest paths (APSP)

• Single-source shortest paths (SSSP)

• Multi-source shortest paths (MSSP)

5

2 1

3

6

4

2 1

2
3

𝑢 𝑣

5

• 𝑛 vertices

• Synchronous rounds, Θ(log 𝑛)-bit messages

• All-to-All communication

• Input and output are local

Input GraphCommunication Network

6

The Congested Clique Model

Previous Work

• Polynomial time algorithms for exact APSP based on
matrix multiplication [Censor-Hillel et al. 15, Le Gall 16]

7

Previous Work

• Polynomial time algorithms for exact APSP based on
matrix multiplication [Censor-Hillel et al. 15, Le Gall 16]

Round
Complexity

Variant

෨𝑂 𝑛1/3 weighted directed

𝑂 𝑛0.158 unweighted undirected

8

Previous Work

• Polynomial time algorithms for exact APSP based on
matrix multiplication [Censor-Hillel et al. 15, Le Gall 16]

• Poly-logarithmic algorithms for approximate
shortest paths [Becker et al. 17, Censor-Hillel et al. 19]

9

Round Complexity Problem Reference

𝑂 𝜖−3polylog 𝑛 1 + 𝜖 -SSSP [Becker, Karrenbauer,
Krinninger, Lenzen ‘17]

𝑂 log2𝑛/𝜖 1 + 𝜖 -MSSP
with 𝑂(𝑛) sources [Censor-Hillel, D,

Korhonen, Leitersdorf,
‘19]

𝑂 log2𝑛/𝜖 3 + 𝜖 -APSP

𝑂 log2𝑛/𝜖 2 + 𝜖 -unweighted
APSP

10

Previous Work: Approximations

• All results are for weighted undirected graphs,
unless specified otherwise

Round Complexity Problem Reference

𝑂 𝜖−3polylog 𝑛 1 + 𝜖 -SSSP [Becker, Karrenbauer,
Krinninger, Lenzen ‘17]

𝑂 log2𝑛/𝜖 1 + 𝜖 -MSSP
with 𝑂(𝑛) sources [Censor-Hillel, D,

Korhonen, Leitersdorf,
‘19]

𝑂 log2𝑛/𝜖 3 + 𝜖 -APSP

𝑂 log2𝑛/𝜖 2 + 𝜖 -unweighted
APSP

11

Previous Work: Approximations

Can we get faster algorithms?

Distances in the Clique

Can we get faster algorithms?

12

Distances in the Clique

Can we get faster algorithms?

• In the matrix multiplication algorithms, in iteration 𝑖
we deal with paths of 2𝑖 edges

13

Distances in the Clique

Can we get faster algorithms?

• In the matrix multiplication algorithms, in iteration 𝑖
we deal with paths of 2𝑖 edges

• We need log 𝑛 iterations

14

Our Results

Unweighted undirected graphs:

15

𝑝𝑜𝑙𝑦(log log 𝑛) • 1 + 𝜖 -MSSP with 𝑂(𝑛1/2) sources
• 2 + 𝜖 -APSP

Our Results

Unweighted undirected graphs:

16

𝑝𝑜𝑙𝑦(log log 𝑛) • 1 + 𝜖 -MSSP with 𝑂(𝑛1/2) sources
• 2 + 𝜖 -APSP

𝑝𝑜𝑙𝑦(log 𝑛) • 1 + 𝜖 -MSSP with 𝑂(𝑛1/2) sources
• 2 + 𝜖 -APSP

Previous work:

Our Results

Unweighted undirected graphs:

17

𝑝𝑜𝑙𝑦(log log 𝑛) • 1 + 𝜖 -MSSP with 𝑂(𝑛1/2) sources
• 2 + 𝜖 -APSP

2 − 𝜖 -APSP implies
Matrix Multiplication

[Dor, Halperin, Zwick ‘00
Korhonen, Suomela ‘18]

The APSP approximation is near-tight:

Techniques

Our Techniques

19

Long Paths Short Paths

Near-additive Emulators Distance Sensitive Toolkit

Shortest Paths

Our Techniques

20

Long Paths Short Paths

Near-additive Emulators Distance Sensitive Toolkit

Shortest Paths

How to Get Faster Algorithms?

• 𝑝𝑜𝑙𝑦(log 𝑛) looks like a natural barrier

21

How to Get Faster Algorithms?

• 𝑝𝑜𝑙𝑦(log 𝑛) looks like a natural barrier

• But maybe we can improve the approximation?

22

APSP Approximation

• (2 + 𝜖)-approximation for APSP:

𝛿(𝑢, 𝑣) ≤ (2 + 𝜖)𝑑(𝑢, 𝑣)

23

APSP Approximation

• (2 + 𝜖)-approximation for APSP:

𝛿(𝑢, 𝑣) ≤ (2 + 𝜖)𝑑(𝑢, 𝑣)

• (1 + 𝜖, 𝛽)-approximation:

𝛿 𝑢, 𝑣 ≤ (1 + 𝜖)𝑑 𝑢, 𝑣 + 𝛽

24

APSP Approximation

• (2 + 𝜖)-approximation for APSP:

𝛿(𝑢, 𝑣) ≤ (2 + 𝜖)𝑑(𝑢, 𝑣)

• (1 + 𝜖, 𝛽)-approximation:

𝛿 𝑢, 𝑣 ≤ (1 + 𝜖)𝑑 𝑢, 𝑣 + 𝛽

Much better for long distances!

25

Near-Additive Emulator

A sparse graph 𝐻 such that for all 𝑢, 𝑣:
𝑑(𝑢, 𝑣) ≤ 𝑑𝐻 𝑢, 𝑣 ≤ 1 + 𝜖 𝑑 𝑢, 𝑣 + 𝛽

26

Near-Additive Emulator

A sparse graph 𝐻 such that for all 𝑢, 𝑣:
𝑑(𝑢, 𝑣) ≤ 𝑑𝐻 𝑢, 𝑣 ≤ 1 + 𝜖 𝑑 𝑢, 𝑣 + 𝛽

Build near-additive
emulator with

𝑂(𝑛 log log 𝑛) edges

Collect it by all vertices
in 𝑂(log log 𝑛) rounds

27

Near-Additive Emulator

A sparse graph 𝐻 such that for all 𝑢, 𝑣:
𝑑(𝑢, 𝑣) ≤ 𝑑𝐻 𝑢, 𝑣 ≤ 1 + 𝜖 𝑑 𝑢, 𝑣 + 𝛽

Build near-additive
emulator with

𝑂(𝑛 log log 𝑛) edges

Collect it by all vertices
in 𝑂(log log 𝑛) rounds

1 + 𝜖, 𝛽 -APSP, for 𝛽 = 𝑂
log log 𝑛

𝜖

log log 𝑛

28

Shortest Paths via Emulators

1 + 𝜖, 𝛽 -APSP, 𝛽 = 𝑂
log log 𝑛

𝜖

log log 𝑛

If 𝑑 𝑢, 𝑣 = Ω 𝛽/𝜖 : 1 + Θ(𝜖) -approximation

Near-additive emulators

29

Shortest Paths via Emulators

1 + 𝜖, 𝛽 -APSP, 𝛽 = 𝑂
log log 𝑛

𝜖

log log 𝑛

If 𝑑 𝑢, 𝑣 = Ω 𝛽/𝜖 : 1 + Θ(𝜖) -approximation

Near-additive emulators

Left with short paths of length 𝑡 = 𝑂(𝛽/𝜖)

30

Shortest Paths via Emulators

Left with short paths of length 𝑡 = 𝑂(𝛽/𝜖)

31

Requires 𝑝𝑜𝑙𝑦 log 𝑡 = 𝑝𝑜𝑙𝑦(log log 𝑛) time!

Shortest Paths via Emulators

32

Long Paths: Ω 𝛽/𝜖 Short Paths: O 𝛽/𝜖

Near-additive Emulators:
1 + Θ(𝜖) -approximation

Distance Sensitive Toolkit:

𝑝𝑜𝑙𝑦 log
𝛽

𝜖
time

Shortest Paths

Shortest Paths via Emulators

33

Long Paths: Ω 𝛽/𝜖 Short Paths: O 𝛽/𝜖

Near-additive Emulators:
1 + Θ(𝜖) -approximation

Distance Sensitive Toolkit:

𝑝𝑜𝑙𝑦 log
𝛽

𝜖
time

Shortest Paths

Distance Tools
[Censor-Hillel, D, Korhonen, Leitersdorf, ‘19]

• 𝑘-nearest: for each
vertex, compute
distances to 𝑘
nearest vertices

𝑣

• MSSP: for each vertex,
compute (1 + 𝜖)-
approximate distances to
the set 𝑆

S

V

v

34

Distance Tools
[Censor-Hillel, D, Korhonen, Leitersdorf, ‘19]

• 𝑘-nearest: for each
vertex, compute
distances to 𝑘
nearest vertices

𝑣

• MSSP: for each vertex,
compute (1 + 𝜖)-
approximate distances to
the set 𝑆

S

V

v

35

Can be implemented in
𝑝𝑜𝑙𝑦 log 𝑛 time

Distance Sensitive Tools

• (𝑘, 𝑡)-nearest: for
each vertex,
compute distances
to 𝑘 nearest vertices
of distance at most 𝑡

𝑣

• Bounded MSSP: for each
vertex, compute (1 + 𝜖)-
approximate distances to
vertices in 𝑆 of distance at
most 𝑡

S

V

v

36

Distance Sensitive Tools

• (𝑘, 𝑡)-nearest: for
each vertex,
compute distances
to 𝑘 nearest vertices
of distance at most 𝑡

𝑣

• Bounded MSSP: for each
vertex, compute (1 + 𝜖)-
approximate distances to
vertices in 𝑆 of distance at
most 𝑡

S

V

v

37

Can be implemented in
𝑝𝑜𝑙𝑦 log 𝑡 = 𝑝𝑜𝑙𝑦(log log 𝑛) time

Shortest Paths via Emulators

38

Long Paths: Ω 𝛽/𝜖 Short Paths: O 𝛽/𝜖

Near-additive Emulators:
1 + Θ(𝜖) -approximation

Distance Sensitive Toolkit:

𝑝𝑜𝑙𝑦 log
𝛽

𝜖
time

Shortest Paths

Shortest Paths via Emulators

39

Long Paths: Ω 𝛽/𝜖 Short Paths: O 𝛽/𝜖

Near-additive Emulators:
1 + Θ(𝜖) -approximation

Distance Sensitive Toolkit:

𝑝𝑜𝑙𝑦 log
𝛽

𝜖
time

Shortest Paths

Near-Additive Emulators

• Each vertex inspects its
t = 𝑂 𝛽/𝜖 -radius ball,
and adds to the
emulator edges to some
of these vertices

v

𝑡

40

Near-Additive Emulators

• Each vertex inspects its
t = 𝑂 𝛽/𝜖 -radius ball,
and adds to the
emulator edges to some
of these vertices

• Can be implemented in
𝑝𝑜𝑙𝑦 log 𝑡 =
𝑝𝑜𝑙𝑦(log log 𝑛) time
using the distance
sensitive toolkit

v

𝑡

41

We construct:

1 + 𝜖, 𝑂
𝑟

𝜖

𝑟−1
-emulator with 𝑂 𝑟𝑛1+1/2

𝑟
edges

• Choosing 𝑟 = log log 𝑛 gives:

1 + 𝜖, 𝛽 -emulator with 𝑂 𝑛 log log 𝑛 edges,

where 𝛽 = 𝑂
log log 𝑛

𝜖

log log 𝑛

42

Near-Additive Emulators
Inspired by [Elkin-Neiman, 2018] and [Thorup-Zwick, 2006]

• Define sampled subsets 𝑉 = 𝑆0 ⊇ 𝑆1 ⊇ ⋯ ⊇ 𝑆𝑟 ⊇ 𝑆𝑟+1 = ∅

• 𝑆𝑖 ← 𝑆𝑎𝑚𝑝𝑙𝑒(𝑆𝑖−1, 𝑝𝑖)

The choice of 𝑝𝑖 determines the size of the emulator.

43

Near-Additive Emulators

𝑆1 ← 𝑆𝑎𝑚𝑝𝑙𝑒(𝑉, 𝑝1)

44

𝑆1 ← 𝑆𝑎𝑚𝑝𝑙𝑒(𝑉, 𝑝1)

𝑆2 ← 𝑆𝑎𝑚𝑝𝑙𝑒(𝑆1, 𝑝2)

45

• Define sampled subsets 𝑉 = 𝑆0 ⊇ 𝑆1 ⊇ ⋯ ⊇ 𝑆𝑟 ⊇ 𝑆𝑟+1 = ∅

• 𝑆𝑖 ← 𝑆𝑎𝑚𝑝𝑙𝑒(𝑆𝑖−1, 𝑝𝑖)

A vertex in 𝒗 ∈ 𝑺𝒊 looks at the ball of radius 𝜹𝒊 = Θ(1/𝜖𝑖)

46

Near-Additive Emulators

𝜹𝒊

𝑣

Is there a vertex in 𝑩 𝒗, 𝜹𝒊 ∩ 𝑺𝒊+𝟏?

A vertex in 𝒗 ∈ 𝑺𝒊 looks at the ball of radius 𝜹𝒊 = Θ(1/𝜖𝑖)

47

Near-Additive Emulators

𝜹𝒊

𝑣

Is there a vertex in 𝑩 𝒗, 𝜹𝒊 ∩ 𝑺𝒊+𝟏?

Yes: add an edge to
such vertex

No: add edges to all
vertices in 𝐵 𝑣, 𝛿𝑖 ∩ 𝑆𝑖

𝜹𝒊

𝑣

A vertex in 𝒗 ∈ 𝑺𝒊 looks at the ball of radius 𝜹𝒊 = Θ(1/𝜖𝑖)

48

Near-Additive Emulators

𝜹𝒊

𝑣

Is there a vertex in 𝑩 𝒗, 𝜹𝒊 ∩ 𝑺𝒊+𝟏?

Yes: add an edge to
such vertex

No: add edges to all
vertices in 𝐵 𝑣, 𝛿𝑖 ∩ 𝑆𝑖

𝜹𝒊

𝑣

A vertex in 𝒗 ∈ 𝑺𝒊 looks at the ball of radius 𝜹𝒊 = Θ(1/𝜖𝑖)

49

Near-Additive Emulators

𝜹𝒊

𝑣

Is there a vertex in 𝑩 𝒗, 𝜹𝒊 ∩ 𝑺𝒊+𝟏?

Yes: add an edge to
such vertex

No: add edges to all
vertices in 𝐵 𝑣, 𝛿𝑖 ∩ 𝑆𝑖

𝜹𝒊

𝑣

• Vertices inspect balls of radius 𝜹𝒊

• Using the distance sensitive toolkit can be done in
𝑝𝑜𝑙𝑦(log 𝛿𝑖) rounds

50

Near-Additive Emulators

𝜹𝒊

𝑣

• 𝑖-clustered vertex: there is a vertex in 𝑆𝑖 close-by

Lemma: if all vertices in the shortest 𝑢 − 𝑣 path are at most

𝑖-clustered, 𝑑𝐻(𝑢, 𝑣) ≤ (1 + Θ 𝜖𝑖)𝑑 𝑢, 𝑣 + Θ
1

𝜖𝑖−1

51

Stretch Analysis

𝜹𝒊

𝑣

• 𝑖-clustered vertex: there is a vertex in 𝑆𝑖 close-by

Lemma: if all vertices in the shortest 𝑢 − 𝑣 path are at most

𝑖-clustered, 𝑑𝐻(𝑢, 𝑣) ≤ (1 + Θ 𝜖𝑖)𝑑 𝑢, 𝑣 + Θ
1

𝜖𝑖−1

• Leads to 1 + Θ 𝜖𝑟 , Θ
1

𝜖𝑟−1
stretch

52

Stretch Analysis

• 𝑖-clustered vertex: there is a vertex in 𝑆𝑖 close-by

Lemma: if all vertices in the shortest 𝑢 − 𝑣 path are at most

𝑖-clustered, 𝑑𝐻(𝑢, 𝑣) ≤ (1 + Θ 𝜖𝑖)𝑑 𝑢, 𝑣 + Θ
1

𝜖𝑖−1

• Leads to 1 + Θ 𝜖𝑟 , Θ
1

𝜖𝑟−1
stretch

• After rescaling: 1 + 𝜖, 𝑂
𝑟

𝜖

𝑟−1

53

Stretch Analysis

• 𝑖-clustered vertex: there is a vertex in 𝑆𝑖 close-by

Lemma: if all vertices in the shortest 𝑢 − 𝑣 path are at most

𝑖-clustered, 𝑑𝐻(𝑢, 𝑣) ≤ (1 + Θ 𝜖𝑖)𝑑 𝑢, 𝑣 + Θ
1

𝜖𝑖−1

• Leads to 1 + Θ 𝜖𝑟 , Θ
1

𝜖𝑟−1
stretch

• After rescaling: 1 + 𝜖, 𝑂
log log 𝑛

𝜖

log log 𝑛

54

Stretch Analysis

Shortest Paths via Emulators

55

Long Paths: Ω 𝛽/𝜖 Short Paths: O 𝛽/𝜖

Near-additive Emulators:
1 + Θ(𝜖) -approximation

Distance Sensitive Toolkit:

𝑝𝑜𝑙𝑦 log
𝛽

𝜖
time

Shortest Paths

Conclusion

Near-additive Emulators Distance Sensitive Toolkit

Long Paths Short Paths

𝑝𝑜𝑙𝑦(log log 𝑛) 1 + 𝜖 -MSSP with 𝑂(𝑛1/2) sources
In unweighted graphs

𝑝𝑜𝑙𝑦(log log 𝑛) 2 + 𝜖 -APSP in unweighted graphs

56

Summary

𝑝𝑜𝑙𝑦(log log 𝑛) round algorithms for approximate
shortest paths in the Congested Clique

𝑝𝑜𝑙𝑦(log log 𝑛) • 1 + 𝜖 -MSSP with 𝑂(𝑛1/2) sources
• 2 + 𝜖 -APSP

• 1 + 𝜖, 𝛽 -APSP, 𝛽 = 𝑂
log log 𝑛

𝜖

log log 𝑛

Unweighted graphs:

57

Open Questions

58

• Faster algorithms

• Weighted APSP

• Directed/exact shortest paths

