Improved Distributed Approximations for Minimum-Weight Two-Edge-Connected Spanning Subgraph

Michal Dory (Technion), Mohsen Ghaffari (ETH Zurich)

Network design

<u>Goal</u>: find a **low-cost subgraph** satisfying **nice** properties

Minimum spanning tree (MST)

<u>Goal</u>: find a minimum weight **connected** subgraph

Minimum spanning tree (MST)

Goal: find a minimum weight connected subgraph

Cannot survive link failures!

Goal: find a minimum weight 2-edge-connected subgraph

resistant to any single edge failure

Goal: find a minimum weight 2-edge-connected subgraph

resistant to any single edge failure

Our goal: find the minimum weight 2-edge-connected spanning subgraph (2-ECSS)

- Central problem in **network design**
- Well-studied in the **sequential** setting: 2-approximations [Khuller and Vishkin 1994, Jain 2001]

Our goal: find the minimum weight **2-edge-connected** spanning subgraph (2-ECSS)

What about a **distributed** algorithm?

Our goal: find the minimum weight 2-edge-connected spanning subgraph (2-ECSS)

What about a **distributed** algorithm?

CONGEST model:

n vertices, synchronous rounds, $\Theta(\log n)$ -bit messages

Previous work & our results

Previous work

Round complexity	Approximation	Notes	Reference
O(n)	3	deterministic	Censor-Hillel and Dory, 17
$\widetilde{\Omega}(D+\sqrt{n})$	Any polynomial $lpha$	randomized	Censor-Hillel and Dory, 17
$\tilde{O}(D+\sqrt{n})$	$O(\log n)$	randomized	Dory, 18

D = diameter

Previous work

Round complexity	Approximation	Notes	Reference
O(n)	3	deterministic	Censor-Hillel and Dory, 17
$\widetilde{\Omega}(D+\sqrt{n})$	Any polynomial $lpha$	randomized	Censor-Hillel and Dory, 17
$\tilde{O}(D + \sqrt{n})$	$O(\log n)$	randomized	Dory, 18

D = diameter

Can we get the best of both worlds?

Previous work

Round complexity	Approximation	Notes	Reference
O(n)	3	deterministic	Censor-Hillel and Dory, 17
$\widetilde{\Omega}(D+\sqrt{n})$	Any polynomial $lpha$	randomized	Censor-Hillel and Dory, 17
$\tilde{O}(D+\sqrt{n})$	$O(\log n)$	randomized	Dory, 18

Our Result: near-optimal algorithm

	$\tilde{O}(D+\sqrt{n})$	$9 + \epsilon$	deterministic
--	-------------------------	----------------	---------------

*We recently improved the approximation to $5 + \epsilon$

Our First Result: near-optimal algorithm

Round complexity	Approximation	Notes	
$\tilde{O}(D+\sqrt{n})$	$9 + \epsilon$	deterministic	

Our Second Result: beyond worst-case graphs

Round complexity	Approximation	Graph Family
$\tilde{O}(D)$	$O(\log n)$	planar, bounded genus, bounded path-width, bounded tree-width
$\tilde{O}(D^2)$	$O(\log n)$	excluded minor
$2^{O(\sqrt{\log n})}$	$O(\log n)$	Erdos-Renyi random graphs

Our First Result: near-optimal algorithm

Round complexity	Approximation	Notes	
$\tilde{O}(D+\sqrt{n})$	$9 + \epsilon$	deterministic	

Our Second Result: beyond worst-case graphs

Round complexity	Approximation	Graph Family
$\tilde{O}(D)$	$O(\log n)$	planar, bounded genus, bounded path-width, bounded tree-width
$\tilde{O}(D^2)$	$O(\log n)$	excluded minor
$2^{O(\sqrt{\log n})}$	$O(\log n)$	Erdos-Renyi random graphs

- We compute a minimum spanning tree **T**
- We **augment** its connectivity to 2

- We compute a minimum spanning tree **T**
- We **augment** its connectivity to 2

- We compute a minimum spanning tree T
- We **augment** its connectivity to 2

The tree augmentation problem (TAP): Find a minimum cost set of edges A such that $T \cup A$ is 2-edge-connected

An α -approximation for **TAP** \rightarrow An (α + 1)-approximation for **2-ECSS**

The tree augmentation problem (TAP): Find a minimum cost set of edges A such that $T \cup A$ is 2-edge-connected

A non-tree edge *e* covers a tree edge *t* if (*T* \ *t*) ∪ *e* is connected

- A non-tree edge *e* covers a tree edge *t* if (*T* \ *t*) ∪ *e* is connected
- The edge $e = \{u, v\}$ covers all the tree edges in the u v path in T

- A non-tree edge *e* covers a tree edge *t* if (*T* \ *t*) ∪ *e* is connected
- The edge $e = \{u, v\}$ covers all the tree edges in the u v path in T
- <u>The goal</u>: **cover all the tree edges** with **minimum cost** set of non-tree edges

- <u>The goal:</u> cover all the tree edges with minimum cost set of non-tree edges
- <u>Special case of set cover:</u> cover a **universe** with minimum cost collection of **sets**

Our approach:

Use a set cover algorithm that exploits the specific structure of TAP

 $\tilde{O}(D + \sqrt{n})$ -round $(9 + \epsilon)$ -approximation

Exploiting the set cover structure

- Set cover with small neighbourhood covers (SNC)
- The SNC algorithm

Exploiting the set cover structure

• Set cover with small neighbourhood covers (SNC)

• The SNC algorithm

Set cover with small neighbourhood covers (SNC)

• The **SNC property** was introduced in

[Agarwal, Chakaravarthy, Choudhury, Roy, Sabharwal, 2018]

- Sequential and parallel algorithms that exploit this property
- <u>Examples</u>: vertex cover, interval cover, tree cover, ...

Simplifying the problem

- It's "enough" to look at paths.
- We decompose the graph into $O(\log n)$ layers of disjoint paths.

Set cover with small neighbourhood covers (SNC) [Agarwal et al., 2018]

• The non-tree edge $e = \{u, v\}$ covers all the tree edges in the u - v path in T.

Set cover with small neighbourhood covers (SNC) [Agarwal et al., 2018]

- The non-tree edge $e = \{u, v\}$ covers all the tree edges in the u v path in T.
- The tree edges t_1, t_2 are **neighbors** if there is a non-tree edge *e* that covers both of them.

Set cover with small neighbourhood covers (SNC) [Agarwal et al., 2018]

- The tree edges t_1, t_2 are **neighbors** if there is a non-tree edge *e* that covers both of them.
- The **neighbourhood** of *t* = all its neighbors

Set cover with small neighbourhood covers (SNC) [Agarwal et al., 2018]

- The tree edges t_1, t_2 are **neighbors** if there is a non-tree edge e that covers both of them.
- The **neighbourhood** of *t* = all its neighbors
- The SNC property = the neighbourhood of t can be covered by 2 non-tree edges

Set cover with small neighbourhood covers (SNC) [Agarwal et al., 2018]

- The tree edges t_1, t_2 are **neighbors** if there is a non-tree edge e that covers both of them.
- The **neighbourhood** of *t* = all its neighbors
- The SNC property = the neighbourhood of t can be covered by 2 non-tree edges
- These edges are called the **petals** of *t*.

Exploiting the set cover structure

• Set cover with small neighbourhood covers (SNC)

• The SNC algorithm

Exploiting the set cover structure

- Set cover with small neighbourhood covers (SNC)
- The SNC algorithm

Forward phase:

Choose a set of "good" edges *A* that covers all tree edges

Reverse-delete phase:

Forward phase:

Choose a set of "good" edges A that covers all tree edges

Reverse-delete phase:

Forward phase:

Choose a set of "good" edges *A* that covers all tree edges

Reverse-delete phase:

- Tree edges t_1, t_2 are **neighbours** if there is a non-tree edge that covers both of them
- Defines a neighbourhood graph \tilde{G}

- Tree edges t_1, t_2 are **neighbours** if there is a non-tree edge that covers both of them
- Defines a neighbourhood graph \tilde{G}

- Tree edges t_1, t_2 are **neighbours** if there is a non-tree edge that covers both of them
- Defines a **neighbourhood graph** \tilde{G}
- A maximal independent set (MIS) in \tilde{G} : a maximal set of non-neighboring tree edges

- Tree edges t_1, t_2 are **neighbours** if there is a non-tree edge that covers both of them
- Defines a **neighbourhood graph** \tilde{G}
- A maximal independent set (MIS) in \tilde{G} : a maximal set of non-neighboring tree edges

Choose a cover $B \subseteq A$ such that all tree edges are covered at most 4 times by B

The **petals** of a tree edge t =

at most 2 edges that cover the neighborhood of t

Choose a cover $B \subseteq A$ such that all tree edges are covered at most 4 times by B

at most 2 edges that cover the neighborhood of t

Choose a cover $B \subseteq A$ such that all tree edges are covered at most 4 times by B

at most 2 edges that cover the neighborhood of t

Choose a cover $B \subseteq A$ such that all tree edges are covered at most 4 times by B

The algorithm:

- Find a maximal independent set M in \tilde{G}
- For each $t \in M$, add its 2 petals to B

<u>B is a cover:</u>

- Each tree edge t has a neighbor t' in M
- The petals of t' cover t

Choose a cover $B \subseteq A$ such that all tree edges are covered at most 4 times by B

Choose a cover $B \subseteq A$ such that all tree edges are covered at most 4 times by B

<u>Claim</u>: each tree edge t has at most 2 neighbors in M

• Assume that t_3 has **3 neighbors** in *M*

 t_5

 t_4

 t_3

 t_2

 t_1

Choose a cover $B \subseteq A$ such that all tree edges are covered at most 4 times by B

- Assume that t_3 has **3 neighbors** in *M*
- The **2 petals** of t_3 cover all its neighbors

Choose a cover $B \subseteq A$ such that all tree edges are covered at most 4 times by B

- Assume that t_3 has **3 neighbors** in *M*
- The **2 petals** of t_3 cover all its neighbors
- At least 2 edges in M are covered by the same petal → neighbors
- Contradiction to independence of *M*

Choose a cover $B \subseteq A$ such that all tree edges are covered at most 4 times by B

Choose a cover $B \subseteq A$ such that all tree edges are covered at most 4 times by B

- Each of t's neighbors in M adds its 2 petals to B
- *t* is covered at most **4 times**

Forward phase:

Choose a set of "good" edges *A* that covers all tree edges

Reverse-delete phase:

Distributed implementation

Toolkit:

- LCA labels
- Decomposition
- Layering

•

Main challenges:

- The set cover graph is not given
- Computing an MIS in the **neighborhood** graph \tilde{G}

...

Our First Result: near-optimal algorithm

Round complexity	Approximation	Notes	
$\tilde{O}(D+\sqrt{n})$	$9 + \epsilon$	deterministic	

Our Second Result: beyond worst-case graphs

Round complexity	Approximation	Graph Family
$\tilde{O}(D)$	$O(\log n)$	planar, bounded genus, bounded path-width, bounded tree-width
$\tilde{O}(D^2)$	$O(\log n)$	excluded minor
$2^{O(\sqrt{\log n})}$	$O(\log n)$	Erdos-Renyi random graphs

Open questions

- Minimum k-edge-connected subgraph for k > 2
- Exploiting the **specific structure** of set cover problems