
Improved Distributed Approximations for
Minimum-Weight

Two-Edge-Connected Spanning Subgraph

Michal Dory (Technion), Mohsen Ghaffari (ETH Zurich)

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement no. 755839

Network design

Goal: find a low-cost subgraph satisfying nice properties

2

Minimum spanning tree (MST)

Goal: find a minimum weight connected subgraph

3

Minimum spanning tree (MST)

Goal: find a minimum weight connected subgraph

Cannot survive link failures!

4

Minimum 2-edge-connected spanning subgraph

Goal: find a minimum weight 2-edge-connected subgraph

resistant to any single edge failure

5

Minimum 2-edge-connected spanning subgraph

Goal: find a minimum weight 2-edge-connected subgraph

resistant to any single edge failure

6

Our goal: find the minimum weight 2-edge-connected spanning
subgraph (2-ECSS)

• Central problem in network design

• Well-studied in the sequential setting: 2-approximations [Khuller and
Vishkin 1994, Jain 2001]

7

Minimum 2-edge-connected spanning subgraph

Our goal: find the minimum weight 2-edge-connected spanning
subgraph (2-ECSS)

What about a distributed algorithm?

8

Minimum 2-edge-connected spanning subgraph

Our goal: find the minimum weight 2-edge-connected spanning
subgraph (2-ECSS)

What about a distributed algorithm?

CONGEST model:

𝒏 vertices, synchronous rounds, Θ(log 𝑛)-bit messages

9

Minimum 2-edge-connected spanning subgraph

Previous work & our results

10

Previous work

11

Round complexity Approximation Notes Reference

𝑂(𝑛) 3 deterministic Censor-Hillel and Dory, 17

෩Ω(𝐷 + 𝑛) Any polynomial 𝛼 randomized Censor-Hillel and Dory, 17

෨𝑂(𝐷 + 𝑛) 𝑂(log 𝑛) randomized Dory, 18

𝐷 = diameter

Previous work

12

Can we get the best of both worlds?

Round complexity Approximation Notes Reference

𝑂(𝑛) 3 deterministic Censor-Hillel and Dory, 17

෩Ω(𝐷 + 𝑛) Any polynomial 𝛼 randomized Censor-Hillel and Dory, 17

෨𝑂(𝐷 + 𝑛) 𝑂(log 𝑛) randomized Dory, 18

𝐷 = diameter

Previous work

13

Round complexity Approximation Notes Reference

𝑂(𝑛) 3 deterministic Censor-Hillel and Dory, 17

෩Ω(𝐷 + 𝑛) Any polynomial 𝛼 randomized Censor-Hillel and Dory, 17

෨𝑂(𝐷 + 𝑛) 𝑂(log 𝑛) randomized Dory, 18

Our Result: near-optimal algorithm

෨𝑂(𝐷 + 𝑛) 9 + 𝜖 deterministic

*We recently improved the approximation to 5 + 𝜖

Round complexity Approximation Notes

14

Our First Result: near-optimal algorithm

෨𝑂(𝐷 + 𝑛) 9 + 𝜖 deterministic

Our Second Result: beyond worst-case graphs

Round complexity Approximation Graph Family

෨𝑂(𝐷) 𝑂(log 𝑛) planar, bounded genus, bounded
path-width, bounded tree-width

෨𝑂(𝐷2) 𝑂(log 𝑛) excluded minor

2𝑂(log 𝑛) 𝑂(log 𝑛) Erdos-Renyi random graphs

Round complexity Approximation Notes

15

Our First Result: near-optimal algorithm

෨𝑂(𝐷 + 𝑛) 9 + 𝜖 deterministic

Our Second Result: beyond worst-case graphs

Round complexity Approximation Graph Family

෨𝑂(𝐷) 𝑂(log 𝑛) planar, bounded genus, bounded
path-width, bounded tree-width

෨𝑂(𝐷2) 𝑂(log 𝑛) excluded minor

2𝑂(log 𝑛) 𝑂(log 𝑛) Erdos-Renyi random graphs

The Algorithm

16

The Algorithm

• We compute a minimum spanning tree 𝑻

• We augment its connectivity to 2

17

The Algorithm

• We compute a minimum spanning tree 𝑻

• We augment its connectivity to 2

18

The tree augmentation problem (TAP):
Find a minimum cost set of edges 𝑨 such that

𝑻 ∪ 𝑨 is 2-edge-connected

The Algorithm

• We compute a minimum spanning tree 𝑻

• We augment its connectivity to 2

19

The tree augmentation problem (TAP):
Find a minimum cost set of edges 𝑨 such that

𝑻 ∪ 𝑨 is 2-edge-connected

An 𝛼-approximation for TAP An (𝛼 + 1)-approximation for 2-ECSS

TAP is a Set cover problem

• A non-tree edge 𝑒 covers a tree edge 𝑡 if 𝑻 ∖ 𝒕 ∪ 𝒆 is
connected

20

𝑒

𝑢 𝑣

𝑡

The tree augmentation problem (TAP):
Find a minimum cost set of edges 𝑨 such that

𝑻 ∪ 𝑨 is 2-edge-connected

TAP is a Set cover problem

• A non-tree edge 𝑒 covers a tree edge 𝑡 if 𝑻 ∖ 𝒕 ∪ 𝒆 is
connected

• The edge 𝑒 = {𝑢, 𝑣} covers all the tree edges in the
𝑢 − 𝑣 path in 𝑇

21

𝑒

𝑢 𝑣

𝑡

The tree augmentation problem (TAP):
Find a minimum cost set of edges 𝑨 such that

𝑻 ∪ 𝑨 is 2-edge-connected

TAP is a Set cover problem

• A non-tree edge 𝑒 covers a tree edge 𝑡 if 𝑻 ∖ 𝒕 ∪ 𝒆 is
connected

• The edge 𝑒 = {𝑢, 𝑣} covers all the tree edges in the
𝑢 − 𝑣 path in 𝑇

• The goal: cover all the tree edges with minimum cost
set of non-tree edges

22

𝑒

𝑢 𝑣

𝑡

The tree augmentation problem (TAP):
Find a minimum cost set of edges 𝑨 such that

𝑻 ∪ 𝑨 is 2-edge-connected

TAP is a Set cover problem

• The goal: cover all the tree edges with minimum cost
set of non-tree edges

• Special case of set cover: cover a universe with
minimum cost collection of sets

23

𝑒

𝑢 𝑣

𝑡

The tree augmentation problem (TAP):
Find a minimum cost set of edges 𝑨 such that

𝑻 ∪ 𝑨 is 2-edge-connected

Solving TAP

Use a set cover
algorithm

Design a specific
algorithm

24

𝑂 𝑛 -round
3-approximation

෨𝑂 𝐷 + 𝑛 -round
𝑂(log 𝑛)-approximation

Solving TAP

Use a set cover
algorithm

Design a specific
algorithm

25

෨𝑂 𝐷 + 𝑛 -round (9 + 𝜖)-approximation

Our approach:
Use a set cover algorithm that exploits the specific structure of TAP

• Set cover with small neighbourhood covers (SNC)

• The SNC algorithm

26

Exploiting the set cover structure

• Set cover with small neighbourhood covers (SNC)

• The SNC algorithm

27

Exploiting the set cover structure

Set cover with small neighbourhood covers (SNC)

• The SNC property was introduced in

[Agarwal, Chakaravarthy, Choudhury, Roy, Sabharwal, 2018]

• Sequential and parallel algorithms that exploit this property

• Examples: vertex cover, interval cover, tree cover, …

28

Simplifying the problem

• It’s “enough” to look at paths.

• We decompose the graph into 𝑂(log 𝑛) layers of disjoint paths.

29

11

1

1 1

1 1 2

22

3

Set cover with small neighbourhood covers (SNC)
[Agarwal et al., 2018]

• The non-tree edge 𝑒 = {𝑢, 𝑣} covers all the tree
edges in the 𝑢 − 𝑣 path in 𝑇.

30

𝑢

𝑣

𝑒

• The non-tree edge 𝑒 = {𝑢, 𝑣} covers all the tree
edges in the 𝑢 − 𝑣 path in 𝑇.

• The tree edges 𝑡1, 𝑡2 are neighbors if there is a
non-tree edge 𝑒 that covers both of them.

31

𝑡1

𝑡2

𝑒

Set cover with small neighbourhood covers (SNC)
[Agarwal et al., 2018]

• The tree edges 𝑡1, 𝑡2 are neighbors if there is a
non-tree edge 𝑒 that covers both of them.

• The neighbourhood of 𝑡 = all its neighbors

32

𝑡

𝑒1

𝑒2

𝑒3 The
neighbourhood

of 𝑡

Set cover with small neighbourhood covers (SNC)
[Agarwal et al., 2018]

• The tree edges 𝑡1, 𝑡2 are neighbors if there is a
non-tree edge 𝑒 that covers both of them.

• The neighbourhood of 𝑡 = all its neighbors

• The SNC property = the neighbourhood of 𝑡 can
be covered by 2 non-tree edges

33

𝑡

𝑒1

𝑒2

𝑒3 The
neighbourhood

of 𝑡

Set cover with small neighbourhood covers (SNC)
[Agarwal et al., 2018]

• The tree edges 𝑡1, 𝑡2 are neighbors if there is a
non-tree edge 𝑒 that covers both of them.

• The neighbourhood of 𝑡 = all its neighbors

• The SNC property = the neighbourhood of 𝑡 can
be covered by 2 non-tree edges

• These edges are called the petals of 𝑡.

34

𝑡

𝑒1

𝑒2

𝑒3 The
neighbourhood

of 𝑡

Set cover with small neighbourhood covers (SNC)
[Agarwal et al., 2018]

• Set cover with small neighbourhood covers (SNC)

• The SNC algorithm

35

Exploiting the set cover structure

• Set cover with small neighbourhood covers (SNC)

• The SNC algorithm

36

Exploiting the set cover structure

The SNC algorithm [Agarwal et al., 2018]

37

Forward phase:
Choose a set of “good” edges 𝑨 that covers all tree edges

Reverse-delete phase:
Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

The SNC algorithm [Agarwal et al., 2018]

38

Forward phase:
Choose a set of “good” edges 𝑨 that covers all tree edges

Reverse-delete phase:
Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Gives a (𝟒 + 𝝐)-approximation for TAP in a path

Translates to a 4 + 𝜖 2 + 1 = 𝟗 + 𝝐 -approximation for 2-ECSS

The SNC algorithm [Agarwal et al., 2018]

39

Forward phase:
Choose a set of “good” edges 𝑨 that covers all tree edges

Reverse-delete phase:
Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Translates to a 4 + 𝜖 2 + 1 = 𝟗 + 𝝐 -approximation for 2-ECSS

Gives a (𝟒 + 𝝐)-approximation for TAP in a path

The reverse-delete phase

40

Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡1 𝑡2

𝑡3

𝑡4

෨𝐺• Tree edges 𝑡1, 𝑡2 are neighbours if there is
a non-tree edge that covers both of them

• Defines a neighbourhood graph ෨𝐺

The reverse-delete phase

41

Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡1 𝑡2

𝑡3

𝑡4

෨𝐺• Tree edges 𝑡1, 𝑡2 are neighbours if there is
a non-tree edge that covers both of them

• Defines a neighbourhood graph ෨𝐺
𝑒

The reverse-delete phase

42

Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡1 𝑡2

𝑡3

𝑡4

෨𝐺• Tree edges 𝑡1, 𝑡2 are neighbours if there is
a non-tree edge that covers both of them

• Defines a neighbourhood graph ෨𝐺

• A maximal independent set (MIS) in ෨𝐺: a
maximal set of non-neighboring tree edges

The reverse-delete phase

43

Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡2

𝑡3

෨𝐺• Tree edges 𝑡1, 𝑡2 are neighbours if there is
a non-tree edge that covers both of them

• Defines a neighbourhood graph ෨𝐺

• A maximal independent set (MIS) in ෨𝐺: a
maximal set of non-neighboring tree edges

𝑡1

𝑡4

The reverse-delete phase

44

Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡2

𝑡3

෨𝐺

𝑡1

𝑡4

The algorithm:

• Find a maximal independent set 𝑀 in ෨𝐺

• For each 𝑡 ∈ 𝑀, add its 2 petals to 𝐵

The petals of a tree edge 𝑡 =
at most 2 edges that cover the neighborhood of 𝑡

The reverse-delete phase

45

Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡5

𝑡2

𝑡3

෨𝐺

𝑡1

𝑡4

The algorithm:

• Find a maximal independent set 𝑀 in ෨𝐺

• For each 𝑡 ∈ 𝑀, add its 2 petals to 𝐵

The petals of a tree edge 𝑡 =
at most 2 edges that cover the neighborhood of 𝑡

𝑡2

𝑡3

𝑡4

𝑡5

𝑡1

𝑒4
1

𝑒4
2

The reverse-delete phase

46

Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡5

𝑡2

𝑡3

෨𝐺

𝑡1

𝑡4

The algorithm:

• Find a maximal independent set 𝑀 in ෨𝐺

• For each 𝑡 ∈ 𝑀, add its 2 petals to 𝐵

The petals of a tree edge 𝑡 =
at most 2 edges that cover the neighborhood of 𝑡

𝑡2

𝑡3

𝑡4

𝑡5

𝑡1

𝑒4
1

𝑒4
2

𝑒1

The reverse-delete phase: correctness

47

Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡5

𝑡2

𝑡3

෨𝐺

𝑡1

𝑡4

The algorithm:

• Find a maximal independent set 𝑀 in ෨𝐺

• For each 𝑡 ∈ 𝑀, add its 2 petals to 𝐵

𝑡2

𝑡3

𝑡4

𝑡5

𝑡1

𝑒4
1

𝑒4
2

𝑒1

𝑩 𝐢s a cover:
• Each tree edge 𝑡 has a neighbor 𝑡′ in 𝑀
• The petals of 𝑡′ cover 𝑡

The reverse-delete phase: correctness

48

Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Claim: each tree edge 𝑡 has at most 2 neighbors in 𝑀

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡1 𝑡2

𝑡3

𝑡4

෨𝐺

The reverse-delete phase: correctness

49

Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Claim: each tree edge 𝑡 has at most 2 neighbors in 𝑀

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5𝑡2

𝑡3

෨𝐺• Assume that 𝑡3 has 3 neighbors in 𝑀
𝑡1

𝑡5

𝑡4

The reverse-delete phase: correctness

50

Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Claim: each tree edge 𝑡 has at most 2 neighbors in 𝑀

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5𝑡2

𝑡3

෨𝐺• Assume that 𝑡3 has 3 neighbors in 𝑀
• The 2 petals of 𝑡3 cover all its

neighbors

𝑡1

𝑡5

𝑡4 𝑡1

𝑡4

𝑡5

The reverse-delete phase: correctness

51

Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Claim: each tree edge 𝑡 has at most 2 neighbors in 𝑀

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5𝑡2

𝑡3

෨𝐺• Assume that 𝑡3 has 3 neighbors in 𝑀
• The 2 petals of 𝑡3 cover all its

neighbors

𝑡1

𝑡5

𝑡4
• At least 2 edges in 𝑴 are covered by

the same petal  neighbors
• Contradiction to independence of 𝑀

𝑡5𝑡5

𝑡4𝑡4

𝑡1𝑡1

The reverse-delete phase: correctness

52

Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Claim: each tree edge 𝑡 has at most 2 neighbors in 𝑀

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡1 𝑡2

𝑡3

𝑡4

෨𝐺

The reverse-delete phase: correctness

53

Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Claim: each tree edge 𝑡 has at most 2 neighbors in 𝑀

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡1 𝑡2

𝑡3

𝑡4

෨𝐺

• Each of 𝑡’s neighbors in 𝑀 adds
its 2 petals to 𝐵

• 𝑡 is covered at most 4 times

54

Forward phase:
Choose a set of “good” edges 𝑨 that covers all tree edges

Reverse-delete phase:
Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Translates to a 4 + 𝜖 2 + 1 = 𝟗 + 𝝐 -approximation for 2-ECSS

The SNC algorithm [Agarwal et al., 2018]

Gives a (𝟒 + 𝝐)-approximation for TAP in a path

Distributed implementation

Toolkit:

• LCA labels

• Decomposition

• Layering

• …

55

Main challenges:

• The set cover graph is not given

• Computing an MIS in the neighborhood
graph ෨𝐺

• …

Round complexity Approximation Notes

56

Our First Result: near-optimal algorithm

෨𝑂(𝐷 + 𝑛) 9 + 𝜖 deterministic

Our Second Result: beyond worst-case graphs

Round complexity Approximation Graph Family

෨𝑂(𝐷) 𝑂(log 𝑛) planar, bounded genus, bounded
path-width, bounded tree-width

෨𝑂(𝐷2) 𝑂(log 𝑛) excluded minor

2𝑂(log 𝑛) 𝑂(log 𝑛) Erdos-Renyi random graphs

Open questions

• Minimum k-edge-connected subgraph for 𝑘 > 2

• Exploiting the specific structure of set cover problems

57

