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Network design

Goal: find a low-cost subgraph satisfying nice properties
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Minimum spanning tree (MST)

Goal: find a minimum weight connected subgraph
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Minimum spanning tree (MST)

Goal: find a minimum weight connected subgraph

Cannot survive link failures!
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Minimum 2-edge-connected spanning subgraph

Goal: find a minimum weight 2-edge-connected subgraph

resistant to any single edge failure
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Minimum 2-edge-connected spanning subgraph

Goal: find a minimum weight 2-edge-connected subgraph

resistant to any single edge failure
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Our goal: find the minimum weight 2-edge-connected spanning 
subgraph (2-ECSS)

• Central problem in network design

• Well-studied in the sequential setting: 2-approximations [Khuller and 
Vishkin 1994, Jain 2001]
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Minimum 2-edge-connected spanning subgraph



Our goal: find the minimum weight 2-edge-connected spanning 
subgraph (2-ECSS)

What about a distributed algorithm?
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Minimum 2-edge-connected spanning subgraph



Our goal: find the minimum weight 2-edge-connected spanning 
subgraph (2-ECSS)

What about a distributed algorithm?

CONGEST model:

𝒏 vertices, synchronous rounds, Θ(log 𝑛)-bit messages
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Minimum 2-edge-connected spanning subgraph



Previous work & our results
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Previous work
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Round complexity Approximation Notes Reference

𝑂(𝑛) 3 deterministic Censor-Hillel and Dory, 17

෩Ω(𝐷 + 𝑛) Any polynomial 𝛼 randomized Censor-Hillel and Dory, 17

෨𝑂(𝐷 + 𝑛) 𝑂(log 𝑛) randomized Dory, 18

𝐷 = diameter



Previous work
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Can we get the best of both worlds?

Round complexity Approximation Notes Reference

𝑂(𝑛) 3 deterministic Censor-Hillel and Dory, 17

෩Ω(𝐷 + 𝑛) Any polynomial 𝛼 randomized Censor-Hillel and Dory, 17

෨𝑂(𝐷 + 𝑛) 𝑂(log 𝑛) randomized Dory, 18

𝐷 = diameter



Previous work
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Round complexity Approximation Notes Reference

𝑂(𝑛) 3 deterministic Censor-Hillel and Dory, 17

෩Ω(𝐷 + 𝑛) Any polynomial 𝛼 randomized Censor-Hillel and Dory, 17

෨𝑂(𝐷 + 𝑛) 𝑂(log 𝑛) randomized Dory, 18

Our Result: near-optimal algorithm

෨𝑂(𝐷 + 𝑛) 9 + 𝜖 deterministic

*We recently improved the approximation to 5 + 𝜖



Round complexity Approximation Notes
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Our First Result: near-optimal algorithm

෨𝑂(𝐷 + 𝑛) 9 + 𝜖 deterministic

Our Second Result: beyond worst-case graphs

Round complexity Approximation Graph Family

෨𝑂(𝐷) 𝑂(log 𝑛) planar, bounded genus, bounded 
path-width, bounded tree-width

෨𝑂(𝐷2) 𝑂(log 𝑛) excluded minor

2𝑂( log 𝑛) 𝑂(log 𝑛) Erdos-Renyi random graphs



Round complexity Approximation Notes
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Our First Result: near-optimal algorithm

෨𝑂(𝐷 + 𝑛) 9 + 𝜖 deterministic

Our Second Result: beyond worst-case graphs

Round complexity Approximation Graph Family

෨𝑂(𝐷) 𝑂(log 𝑛) planar, bounded genus, bounded 
path-width, bounded tree-width

෨𝑂(𝐷2) 𝑂(log 𝑛) excluded minor

2𝑂( log 𝑛) 𝑂(log 𝑛) Erdos-Renyi random graphs



The Algorithm
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The Algorithm

• We compute a minimum spanning tree 𝑻

• We augment its connectivity to 2
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The Algorithm

• We compute a minimum spanning tree 𝑻

• We augment its connectivity to 2
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The tree augmentation problem (TAP):
Find a minimum cost set of edges 𝑨 such that 

𝑻 ∪ 𝑨 is 2-edge-connected



The Algorithm

• We compute a minimum spanning tree 𝑻

• We augment its connectivity to 2
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The tree augmentation problem (TAP):
Find a minimum cost set of edges 𝑨 such that 

𝑻 ∪ 𝑨 is 2-edge-connected

An 𝛼-approximation for TAP An (𝛼 + 1)-approximation for 2-ECSS



TAP is a Set cover problem

• A non-tree edge 𝑒 covers a tree edge 𝑡 if 𝑻 ∖ 𝒕 ∪ 𝒆 is 
connected
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𝑒

𝑢 𝑣

𝑡

The tree augmentation problem (TAP):
Find a minimum cost set of edges 𝑨 such that 

𝑻 ∪ 𝑨 is 2-edge-connected



TAP is a Set cover problem

• A non-tree edge 𝑒 covers a tree edge 𝑡 if 𝑻 ∖ 𝒕 ∪ 𝒆 is 
connected

• The edge 𝑒 = {𝑢, 𝑣} covers all the tree edges in the     
𝑢 − 𝑣 path in 𝑇
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𝑒

𝑢 𝑣

𝑡

The tree augmentation problem (TAP):
Find a minimum cost set of edges 𝑨 such that 

𝑻 ∪ 𝑨 is 2-edge-connected



TAP is a Set cover problem

• A non-tree edge 𝑒 covers a tree edge 𝑡 if 𝑻 ∖ 𝒕 ∪ 𝒆 is 
connected

• The edge 𝑒 = {𝑢, 𝑣} covers all the tree edges in the 
𝑢 − 𝑣 path in 𝑇

• The goal: cover all the tree edges with minimum cost 
set of non-tree edges
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𝑒

𝑢 𝑣

𝑡

The tree augmentation problem (TAP):
Find a minimum cost set of edges 𝑨 such that 

𝑻 ∪ 𝑨 is 2-edge-connected



TAP is a Set cover problem

• The goal: cover all the tree edges with minimum cost 
set of non-tree edges

• Special case of set cover: cover a universe with 
minimum cost collection of sets
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𝑒

𝑢 𝑣

𝑡

The tree augmentation problem (TAP):
Find a minimum cost set of edges 𝑨 such that 

𝑻 ∪ 𝑨 is 2-edge-connected



Solving TAP

Use a set cover 
algorithm

Design a specific 
algorithm
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𝑂 𝑛 -round 
3-approximation

෨𝑂 𝐷 + 𝑛 -round 
𝑂(log 𝑛)-approximation



Solving TAP

Use a set cover 
algorithm

Design a specific 
algorithm
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෨𝑂 𝐷 + 𝑛 -round (9 + 𝜖)-approximation

Our approach:
Use a set cover algorithm that exploits the specific structure of TAP



• Set cover with small neighbourhood covers (SNC)

• The SNC algorithm
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Exploiting the set cover structure



• Set cover with small neighbourhood covers (SNC)

• The SNC algorithm
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Exploiting the set cover structure



Set cover with small neighbourhood covers (SNC)

• The SNC property was introduced in 

[Agarwal, Chakaravarthy, Choudhury, Roy, Sabharwal, 2018]

• Sequential and parallel algorithms that exploit this property

• Examples: vertex cover, interval cover, tree cover, …
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Simplifying the problem

• It’s “enough” to look at paths.

• We decompose the graph into 𝑂(log 𝑛) layers of disjoint paths. 

29

11

1

1 1

1 1 2
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Set cover with small neighbourhood covers (SNC) 
[Agarwal et al., 2018]

• The non-tree edge 𝑒 = {𝑢, 𝑣} covers all the tree 
edges in the 𝑢 − 𝑣 path in 𝑇.
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𝑢

𝑣

𝑒



• The non-tree edge 𝑒 = {𝑢, 𝑣} covers all the tree 
edges in the 𝑢 − 𝑣 path in 𝑇.

• The tree edges 𝑡1, 𝑡2 are neighbors if there is a 
non-tree edge 𝑒 that covers both of them.
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𝑡1

𝑡2

𝑒

Set cover with small neighbourhood covers (SNC) 
[Agarwal et al., 2018]



• The tree edges 𝑡1, 𝑡2 are neighbors if there is a 
non-tree edge 𝑒 that covers both of them.

• The neighbourhood of 𝑡 = all its neighbors
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𝑡

𝑒1

𝑒2

𝑒3 The 
neighbourhood

of 𝑡

Set cover with small neighbourhood covers (SNC) 
[Agarwal et al., 2018]



• The tree edges 𝑡1, 𝑡2 are neighbors if there is a 
non-tree edge 𝑒 that covers both of them.

• The neighbourhood of 𝑡 = all its neighbors

• The SNC property = the neighbourhood of 𝑡 can 
be covered by 2 non-tree edges

33

𝑡
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Set cover with small neighbourhood covers (SNC) 
[Agarwal et al., 2018]



• The tree edges 𝑡1, 𝑡2 are neighbors if there is a 
non-tree edge 𝑒 that covers both of them.

• The neighbourhood of 𝑡 = all its neighbors

• The SNC property = the neighbourhood of 𝑡 can 
be covered by 2 non-tree edges

• These edges are called the petals of 𝑡.
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𝑡

𝑒1

𝑒2

𝑒3 The 
neighbourhood

of 𝑡

Set cover with small neighbourhood covers (SNC) 
[Agarwal et al., 2018]



• Set cover with small neighbourhood covers (SNC)

• The SNC algorithm
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Exploiting the set cover structure



• Set cover with small neighbourhood covers (SNC)

• The SNC algorithm

36

Exploiting the set cover structure



The SNC algorithm [Agarwal et al., 2018]
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Forward phase: 
Choose a set of “good” edges 𝑨 that covers all tree edges

Reverse-delete phase: 
Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵



The SNC algorithm [Agarwal et al., 2018]
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Forward phase: 
Choose a set of “good” edges 𝑨 that covers all tree edges

Reverse-delete phase: 
Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Gives a (𝟒 + 𝝐)-approximation for TAP in a path

Translates to a 4 + 𝜖 2 + 1 = 𝟗 + 𝝐 -approximation for 2-ECSS



The SNC algorithm [Agarwal et al., 2018]
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Forward phase: 
Choose a set of “good” edges 𝑨 that covers all tree edges

Reverse-delete phase: 
Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Translates to a 4 + 𝜖 2 + 1 = 𝟗 + 𝝐 -approximation for 2-ECSS

Gives a (𝟒 + 𝝐)-approximation for TAP in a path



The reverse-delete phase
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Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡1 𝑡2

𝑡3

𝑡4

෨𝐺• Tree edges 𝑡1, 𝑡2 are neighbours if there is 
a non-tree edge that covers both of them

• Defines a neighbourhood graph ෨𝐺



The reverse-delete phase
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Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡1 𝑡2

𝑡3

𝑡4

෨𝐺• Tree edges 𝑡1, 𝑡2 are neighbours if there is 
a non-tree edge that covers both of them

• Defines a neighbourhood graph ෨𝐺
𝑒



The reverse-delete phase
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Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡1 𝑡2

𝑡3

𝑡4

෨𝐺• Tree edges 𝑡1, 𝑡2 are neighbours if there is 
a non-tree edge that covers both of them

• Defines a neighbourhood graph ෨𝐺

• A maximal independent set (MIS) in ෨𝐺: a 
maximal set of non-neighboring tree edges



The reverse-delete phase
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Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡2

𝑡3

෨𝐺• Tree edges 𝑡1, 𝑡2 are neighbours if there is 
a non-tree edge that covers both of them

• Defines a neighbourhood graph ෨𝐺

• A maximal independent set (MIS) in ෨𝐺: a 
maximal set of non-neighboring tree edges

𝑡1

𝑡4



The reverse-delete phase
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Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡2

𝑡3

෨𝐺

𝑡1

𝑡4

The algorithm: 

• Find a maximal independent set 𝑀 in ෨𝐺

• For each 𝑡 ∈ 𝑀, add its 2 petals to 𝐵

The petals of a tree edge 𝑡 = 
at most 2 edges that cover the neighborhood of 𝑡



The reverse-delete phase
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Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡5

𝑡2

𝑡3

෨𝐺

𝑡1

𝑡4

The algorithm: 

• Find a maximal independent set 𝑀 in ෨𝐺

• For each 𝑡 ∈ 𝑀, add its 2 petals to 𝐵

The petals of a tree edge 𝑡 = 
at most 2 edges that cover the neighborhood of 𝑡

𝑡2

𝑡3

𝑡4

𝑡5

𝑡1

𝑒4
1

𝑒4
2



The reverse-delete phase
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Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡5

𝑡2

𝑡3

෨𝐺

𝑡1

𝑡4

The algorithm: 

• Find a maximal independent set 𝑀 in ෨𝐺

• For each 𝑡 ∈ 𝑀, add its 2 petals to 𝐵

The petals of a tree edge 𝑡 = 
at most 2 edges that cover the neighborhood of 𝑡

𝑡2

𝑡3

𝑡4

𝑡5

𝑡1

𝑒4
1

𝑒4
2

𝑒1



The reverse-delete phase: correctness
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Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

𝑡5

𝑡2

𝑡3

෨𝐺

𝑡1

𝑡4

The algorithm: 

• Find a maximal independent set 𝑀 in ෨𝐺

• For each 𝑡 ∈ 𝑀, add its 2 petals to 𝐵

𝑡2

𝑡3

𝑡4

𝑡5

𝑡1

𝑒4
1

𝑒4
2

𝑒1

𝑩 𝐢s a cover: 
• Each tree edge 𝑡 has a neighbor 𝑡′ in 𝑀
• The petals of 𝑡′ cover 𝑡



The reverse-delete phase: correctness
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Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Claim: each tree edge 𝑡 has at most 2 neighbors in 𝑀

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡1 𝑡2

𝑡3

𝑡4

෨𝐺



The reverse-delete phase: correctness
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Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Claim: each tree edge 𝑡 has at most 2 neighbors in 𝑀

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5𝑡2

𝑡3

෨𝐺• Assume that 𝑡3 has 3 neighbors in 𝑀
𝑡1

𝑡5

𝑡4



The reverse-delete phase: correctness
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Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Claim: each tree edge 𝑡 has at most 2 neighbors in 𝑀

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5𝑡2

𝑡3

෨𝐺• Assume that 𝑡3 has 3 neighbors in 𝑀
• The 2 petals of 𝑡3 cover all its 

neighbors

𝑡1

𝑡5

𝑡4 𝑡1

𝑡4

𝑡5



The reverse-delete phase: correctness
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Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Claim: each tree edge 𝑡 has at most 2 neighbors in 𝑀

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5𝑡2

𝑡3

෨𝐺• Assume that 𝑡3 has 3 neighbors in 𝑀
• The 2 petals of 𝑡3 cover all its 

neighbors

𝑡1

𝑡5

𝑡4
• At least 2 edges in 𝑴 are covered by 

the same petal  neighbors
• Contradiction to independence of 𝑀

𝑡5𝑡5

𝑡4𝑡4

𝑡1𝑡1



The reverse-delete phase: correctness
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Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Claim: each tree edge 𝑡 has at most 2 neighbors in 𝑀

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡1 𝑡2

𝑡3

𝑡4

෨𝐺



The reverse-delete phase: correctness
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Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Claim: each tree edge 𝑡 has at most 2 neighbors in 𝑀

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡5

𝑡1 𝑡2

𝑡3

𝑡4

෨𝐺

• Each of 𝑡’s neighbors in 𝑀 adds 
its 2 petals to 𝐵

• 𝑡 is covered at most 4 times
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Forward phase: 
Choose a set of “good” edges 𝑨 that covers all tree edges

Reverse-delete phase: 
Choose a cover 𝑩 ⊆ 𝐴 such that all tree edges are covered at most 4 times by 𝐵

Translates to a 4 + 𝜖 2 + 1 = 𝟗 + 𝝐 -approximation for 2-ECSS

The SNC algorithm [Agarwal et al., 2018]

Gives a (𝟒 + 𝝐)-approximation for TAP in a path



Distributed implementation

Toolkit:

• LCA labels

• Decomposition

• Layering

• …
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Main challenges:

• The set cover graph is not given

• Computing an MIS in the neighborhood 
graph ෨𝐺

• …



Round complexity Approximation Notes

56

Our First Result: near-optimal algorithm

෨𝑂(𝐷 + 𝑛) 9 + 𝜖 deterministic

Our Second Result: beyond worst-case graphs

Round complexity Approximation Graph Family

෨𝑂(𝐷) 𝑂(log 𝑛) planar, bounded genus, bounded 
path-width, bounded tree-width

෨𝑂(𝐷2) 𝑂(log 𝑛) excluded minor

2𝑂( log 𝑛) 𝑂(log 𝑛) Erdos-Renyi random graphs



Open questions

• Minimum k-edge-connected subgraph for 𝑘 > 2

• Exploiting the specific structure of set cover problems
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