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Distance Computation

• All-pairs shortest paths (APSP)

• Single-source shortest paths (SSSP) 

• Multi-source shortest paths (MSSP)
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The Congested Clique model

• 𝑛 vertices

• Synchronous rounds

• Θ(log 𝑛)-bit messages 
to all vertices

• Input and output are 
local
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Computing Distances using 
Matrix Multiplication

• 𝐴 – weighted adjacency matrix

• Distance product: 

𝐴2 𝑢, 𝑣 = min
𝑤

𝐴 𝑢,𝑤 + 𝐴 𝑤, 𝑣

• This is the minimum weight path between u and v 
of at most 2 edges
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• Similarly, 𝐴𝑖 𝑢, 𝑣 = minimum weight path 
between 𝑢 and 𝑣 of at most 𝑖 edges (hops). 

• Our goal: compute 𝐴𝑛

Computing Distances using 
Matrix Multiplication
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• Similarly, 𝐴𝑖 𝑢, 𝑣 = minimum weight path 
between 𝑢 and 𝑣 of at most 𝑖 edges (hops). 

• Our goal: compute 𝐴𝑛

Computing Distances using 
Matrix Multiplication
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𝐴 𝑢, 𝑣 = ∞
𝐴2 𝑢, 𝑣 = ∞
𝐴3 𝑢, 𝑣 = 7
𝐴4 𝑢, 𝑣 = 6

...
𝐴𝑛 𝑢, 𝑣 = 6



Computing Distances using 
Matrix Multiplication

• Our goal: compute 𝐴𝑛

• Requires 𝑂 log 𝑛 matrix multiplications:

𝐴 → 𝐴2 → 𝐴4 → … → 𝐴𝑛

• How fast can we multiply matrices?



Computing Distances using 
Matrix Multiplication

𝑂 𝑛1−2/𝜔

= 𝑂 𝑛0.158
Ring [Censor-Hillel, Kaski, 

Korhonen, Lenzen, Paz, 
Suomela ‘15]

𝑂 𝑛1/3 Semiring [Censor-Hillel, Kaski, 
Korhonen, Lenzen, Paz, 
Suomela ‘15]

Rectangular,
Multiple 
instances, more

[Le Gall ‘16]



Computing Distances using 
Matrix Multiplication

𝑂 𝑛0.158 • Exact unweighted undirected
APSP

• 1 + 𝑜 1 -approximation for 

weighted directed APSP

[Censor-Hillel, Kaski, 
Korhonen, Lenzen, Paz, 
Suomela ‘15]

෨𝑂 𝑛1/3 Exact weighted directed APSP [Censor-Hillel, Kaski, 
Korhonen, Lenzen, Paz, 
Suomela ‘15]

𝑂 𝑛0.2096 Exact APSP in directed graphs 
with constant weights

[Le Gall ‘16]



Computing Distances using 
Matrix Multiplication

All complexities are polynomial!

𝑂 𝑛0.158 • Exact unweighted undirected
APSP

• 1 + 𝑜 1 -approximation for 

weighted directed APSP

[Censor-Hillel, Kaski, 
Korhonen, Lenzen, Paz, 
Suomela ‘15]

෨𝑂 𝑛1/3 Exact weighted directed APSP [Censor-Hillel, Kaski, 
Korhonen, Lenzen, Paz, 
Suomela ‘15]

𝑂 𝑛0.2096 Exact APSP in directed graphs 
with constant weights

[Le Gall ‘16]



What about approximations?

• We can compute a spanner: a sparse subgraph that 
approximates the distances.

෨𝑂 𝑛1/𝑘 2𝑘 − 1 -approximation for 
weighted undirected APSP



What about approximations?

• We can compute a spanner: a sparse subgraph that 
approximates the distances.

Still polynomial for any constant 𝑘!

෨𝑂 𝑛1/𝑘 2𝑘 − 1 -approximation for 
weighted undirected APSP



Computing Distances in the 
Congested Clique

Can we get constant approximation for APSP 

in sub-polynomial time?



Computing Distances in the 
Congested Clique

Can we get constant approximation for APSP 

in sub-polynomial time?

• For SSSP:

𝑂 𝜖−3polylog 𝑛 -round 1 + 𝜖 -approximation

[Becker, Karrenbauer, Krinninger, Lenzen ‘17]



Computing Distances in the 
Congested Clique

Can we get constant approximation for APSP 

in sub-polynomial time?

• For SSSP:

𝑂 𝜖−3polylog 𝑛 -round 1 + 𝜖 -approximation

[Becker, Karrenbauer, Krinninger, Lenzen ‘17]

Only for a single source!



Our Results: APSP

𝑂 log2𝑛/𝜖 • 2 + 𝜖 -approximation for unweighted 
undirected APSP

• 3 + 𝜖 -approximation for weighted 
undirected APSP

2 − 𝜖 -APSP implies MM [Dor, Halperin, Zwick ‘00
Korhonen, Suomela ‘18]

First polylog constant-factor approximation!



Our Results: MSSP and more

෨𝑂 𝑛1/3 Exact weighted 
SSSP

[Censor-Hillel, Kaski, Korhonen, 
Lenzen, Paz, Suomela ‘15]

𝑂 𝜖−3polylog 𝑛 1 + 𝜖 -SSSP [Becker, Karrenbauer, 
Krinninger, Lenzen ‘17]

𝑂 log2𝑛/𝜖 1 + 𝜖 -approximation 
weighted undirected MSSP

with 𝑂(𝑛1/2) sources

𝑂 log2𝑛/𝜖 Near 3/2 -approximation  
for diameter

෨𝑂 𝑛1/6 Exact weighted undirected 
SSSP

Previous results:



Our Techniques

• We can multiply sparse matrices faster:

• 𝜌𝐴= density of A, the average number of non-zero entries on 
a row

• Example: 𝑂(1) rounds for 𝑂(𝑛3/2) edges.

𝑂 1 +
𝜌𝑆𝜌𝑇

1/3

𝑛1/3
Semiring, Sparse [Censor-Hillel, Leitersdorf, 

Turner ‘18]



Our Techniques

• We can multiply sparse matrices faster.

• How can we use this?

- Even if 𝐴 is sparse, 𝐴2 can be dense.

- We want to compute distances in general graphs.



Our Techniques

• We can multiply sparse matrices faster.

• How can we use this?

- Even if 𝐴 is sparse, 𝐴2 can be dense.

- We want to compute distances in general graphs.

Many building blocks for distance computation are 
actually based on computations in sparse graphs
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nearest vertices
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Building blocks for distance computation

• (𝑆, 𝑑, 𝑘)-source detection: for each vertex, compute 
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑

× =

𝑆

(𝑑 = 2)

Multiplication of sparse matrix by dense matrix: 
previous MM algorithm is still polynomial



Building blocks for distance computation

• (𝑆, 𝑑, 𝑘)-source detection: for each vertex, compute 
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑

× =

𝑆

(𝑑 = 2)

Output matrix is also sparse!

𝑆
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• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices

× =

𝑘 𝑘

It’s enough to look only at the 𝑘 closest 
vertices to each vertex 



Building blocks for distance computation

• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices

× =

𝑘 𝑘

It’s enough to look only at the 𝑘 closest 
vertices to each vertex: also in the output

𝑘

We don’t know the identity of the 𝑘 closest vertices before the computation 



New Matrix Multiplication algorithm

• Previous algorithm:

• Our algorithm:

𝑂 1 +
𝜌𝑆𝜌𝑇

1/3

𝑛1/3
Semiring, 
Sparse

[Censor-Hillel, Leitersdorf, 
Turner ‘18]

𝑂 1 +
𝜌𝑆𝜌𝑇𝜌𝑃

1/3

𝑛2/3
Semiring, 
Sparse

[Censor-Hillel, Dory, 
Korhonen, Leitersdorf, ‘19]

× =𝑆 𝑇 𝑃



New Matrix Multiplication algorithm

• Our algorithm:

𝑂 1 +
𝜌𝑆𝜌𝑇𝜌𝑃

1/3

𝑛2/3
Semiring, 
Sparse

[Censor-Hillel, Dory, 
Korhonen, Leitersdorf, ‘19]

• Depends also on the sparsity of the output matrix
• Even if we don’t know the structure of the output matrix, 

we can sparsify the output matrix on-the-fly, keeping only 
𝜌𝑃 smallest entries for each row



Application: Distance Tools

𝑂 1 +
𝜌𝑆𝜌𝑇𝜌𝑃

1/3

𝑛2/3
Semiring, 
Sparse

[Censor-Hillel, Dory, 
Korhonen, Leitersdorf, ‘19]

𝑘-nearest: 

𝑂
𝑘

𝑛2/3
+ 1 log 𝑘 rounds  𝑂(log 𝑛) for 𝑘 = 𝑛2/3

(𝑆, 𝑑, 𝑘)-source detection: 

𝑂
𝑚1/3𝑘2/3

𝑛
+ 1 𝑑 rounds (𝑚 = number of edges ) 

Work for directed weighted graphs



Application: Distance Tools

× =

𝑘 𝑘

• To exploit the sparsity we need 𝒅 = 𝒏 multiplications -
too expensive!

(𝑆, 𝑑, 𝑘)-source detection: 

𝑂
𝑚1/3𝑘2/3

𝑛
+ 1 𝑑 rounds (𝑚 = number of edges ) 



Solution: Hopsets

(𝛽, 𝜖)-hopset 𝐻: 
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in 
𝐺 ∪ 𝐻 give 1 + 𝜖 -approximation for the distances in 𝐺

𝐺
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Enough to look at 𝛽-hop distances!



Solution: Hopsets

(𝛽, 𝜖)-hopset 𝐻: 
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in   
𝐺 ∪ 𝐻 give 1 + 𝜖 -approximation for the distances in 𝐺
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log log 𝑛

𝜖

log log 𝑛

[Elkin, Neiman ‘17]



Solution: Hopsets

(𝛽, 𝜖)-hopset 𝐻: 
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in   
𝐺 ∪ 𝐻 give 1 + 𝜖 -approximation for the distances in 𝐺

Our goal: to have small 𝛽 and small running time 𝑡

What is known?

• We can get  𝛽 = 𝑡 = 𝑂
log log 𝑛

𝜖

log log 𝑛

[Elkin, Neiman ‘17]

Can we get a poly-logarithmic complexity?



Solution: Hopsets

(𝛽, 𝜖)-hopset 𝐻: 
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in 
𝐺 ∪ 𝐻 give 1 + 𝜖 -approximation for the distances in 𝐺

Our goal: to have small 𝛽 and small running time 𝑡

What is known?

• We can get  𝛽 = 𝑡 = 𝑂
log log 𝑛

𝜖

log log 𝑛

[Elkin, Neiman ‘17]

Yes! we can get: 𝛽 = 𝑂
log 𝑛

𝜖
, 𝑡 = 𝑂

log2 𝑛

𝜖



Solution: Hopsets

(𝛽, 𝜖)-hopset 𝐻: 
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in 
𝐺 ∪ 𝐻 give 1 + 𝜖 -approximation for the distances in 𝐺

Our goal: to have small 𝛽 and small running time 𝑡

• We can get: 𝛽 = 𝑂
log 𝑛

𝜖
, 𝑡 = 𝑂

log2 𝑛

𝜖

Idea: using our distance tools we can implement 
efficiently the hopset construction of [Elkin, Neiman ‘17]
[Huang, Pettie ‘19] [Thorup, Zwick ‘06]



Applications: MSSP

(𝛽, 𝜖)-hopset 𝐻: 
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in 𝐺 ∪ 𝐻
give 1 + 𝜖 -approximation for the distances in 𝐺

(𝑆, 𝑑, 𝑘)-source detection: 𝑂
𝑚1/3𝑘2/3

𝑛
+ 1 𝑑 rounds

• We run our (𝑆, 𝑑, 𝑘)- source detection in 𝐺 ∪ 𝐻 with 𝑑 = 𝛽: 
1 + 𝜖 −approximation for the distances of all vertices

from 𝑆

Complexity: 𝑂
𝑆 2/3

𝑛1/3
+ log 𝑛

log 𝑛

𝜖

poly-logarithmic for 𝑆 = 𝑂 𝑛



Applications: APSP

• We compute the 𝑘 = ෨𝑂( 𝑛) nearest vertices 𝑁𝑘(𝑣) for each 𝑣

• We compute a hitting set 𝑨 of the sets 𝑁𝑘(𝑣) with 𝐴 = ෨𝑂( 𝑛)

𝑁𝑘(𝑣) 𝑁𝑘(𝑢) 𝑁𝑘(𝑤)



Applications: APSP

• We compute the 𝑘 = ෨𝑂( 𝑛) nearest vertices 𝑁𝑘(𝑣) for each 𝑣

• We compute a hitting set 𝑨 of the sets 𝑁𝑘(𝑣) with 𝐴 = ෨𝑂 𝑛 : 
𝑂( loglog𝑛 3) rounds [Parter, Yogev ’18]

𝑁𝑘(𝑣) 𝑁𝑘(𝑢) 𝑁𝑘(𝑤)



Applications: APSP

• For each 𝑣, let 𝑝v = the closest vertex to 𝑣 in 𝐴 ∩ 𝑁𝑘 𝑣

• We compute (1 + 𝜖)-approximate distances 𝛿(𝑢, 𝑣) from all 
vertices to 𝐴

𝑁𝑘(𝑣) 𝑁𝑘(𝑢) 𝑁𝑘(𝑤)

𝑤

𝑝𝑤



Applications: APSP

• If 𝑣 ∈ 𝑁𝑘(𝑢), 𝑢 knows 𝑑(𝑢, 𝑣).

• Otherwise, we estimate 𝛿 𝑢, 𝑣 = 𝛿 𝑢, 𝑝𝑢 + 𝛿(𝑝𝑢, 𝑣)

𝑁𝑘(𝑣) 𝑁𝑘(𝑢)

𝑣 𝑢

𝑝𝑢



Applications: APSP

• If 𝑣 ∈ 𝑁𝑘(𝑢), 𝑢 knows 𝑑(𝑢, 𝑣).

• Otherwise, we estimate 𝛿 𝑢, 𝑣 = 𝛿 𝑢, 𝑝𝑢 + 𝛿(𝑝𝑢, 𝑣)
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𝑣 𝑢
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• 𝑑 𝑢, 𝑝𝑢 ≤ 𝑑 𝑢, 𝑣



Applications: APSP

• If 𝑣 ∈ 𝑁𝑘(𝑢), 𝑢 knows 𝑑(𝑢, 𝑣).

• Otherwise, we estimate 𝛿 𝑢, 𝑣 = 𝛿 𝑢, 𝑝𝑢 + 𝛿(𝑝𝑢, 𝑣)

𝑁𝑘(𝑣) 𝑁𝑘(𝑢)

𝑣 𝑢

𝑝𝑢

• 𝑑 𝑢, 𝑝𝑢 ≤ 𝑑 𝑢, 𝑣
• 𝑑 𝑣, 𝑝𝑢 ≤ 𝑑 𝑢, 𝑣 + 𝑑 𝑢, 𝑝𝑢 ≤ 2𝑑(𝑢, 𝑣)
• 𝛿 𝑢, 𝑝𝑢 + 𝛿 𝑝𝑢, 𝑣 gives a 𝟑 + 𝝐 -approximation



Applications: APSP

Complexity: 

• Computing the 𝑘-nearest: 𝑂(log 𝑛) time

• Computing a hitting set: 𝑂( loglog𝑛 3) time

• Computing distances to 𝐴: 𝑂
log2 𝑛

𝜖
time

3 + 𝜖 -approximation in 𝑂
log2 𝑛

𝜖
rounds 



Applications: APSP

Can we improve the approximation? 

𝑁𝑘(𝑣) 𝑁𝑘(𝑢)

𝑣 𝑢

𝑝𝑢

If 𝑑 𝑢, 𝑝𝑢 ≤
𝑑 𝑢,𝑣

2
then the same analysis shows a (2 + 𝜖)-

approximation



Applications: APSP

Case 1: 

𝑑 𝑢, 𝑝𝑢 ≤
𝑑 𝑢,𝑣

2
(2 + 𝜖)-approximation

𝑢 𝑣𝑤

𝑁𝑘(𝑣)

𝑝𝑢

𝑁𝑘(𝑢)



Applications: APSP

Case 2: 

𝑤 ∈ 𝑁𝑘(𝑢) ∩ 𝑁𝑘(𝑣) We can compute 𝑑(𝑢, 𝑣)

𝑢 𝑣𝑤

𝑁𝑘(𝑢) 𝑁𝑘(𝑣)



Applications: APSP

Case 3: 

𝑢 𝑣

𝑁𝑘(𝑢)

𝑢′ 𝑣′

𝑁𝑘(𝑣)

𝑝𝑢



Applications: APSP

Case 3: 

𝑑 𝑢, 𝑝𝑢 ≤
𝑑 𝑢,𝑣 +𝑾

2
2 + 𝜖 , 1 + 𝜖 𝑾 -approximation

𝑢 𝑣

𝑁𝑘(𝑢)

𝑢′ 𝑣′

𝑁𝑘(𝑣)

𝑝𝑢

𝑊



Applications: APSP

Case 3: 

𝑢 𝑣

𝑁𝑘(𝑢)

𝑢′ 𝑣′

𝑁𝑘(𝑣)

𝑝𝑢

How do we get a 2 + 𝜖 -approximation?



Applications: APSP

Case 3: 

𝑢 𝑣

𝑁𝑘(𝑢)

𝑢′ 𝑣′

𝑁𝑘(𝑣)

𝑝𝑢

• We have a 3-hop shortest path between 𝑢 and 𝑣
• However, the 3 relevant matrices are too dense



Applications: APSP

Dense paths: 

𝑢 𝑣𝑤

deg(𝑤) ≥ 𝑛



Applications: APSP

Dense paths: 

𝑢 𝑣𝑤

deg(𝑤) ≥ 𝑛

Compute a hitting set of size ෨𝑂 𝑛 for high-degree vertices



Applications: APSP

Dense paths: 

𝑢 𝑣𝑤

deg(𝑤) ≥ 𝑛

The distance through the hitting set gives a +2 approximation



Applications: APSP

Sparse paths: 

𝑢 𝑣

• All degrees are at most 𝑛
• We can focus on a sparse graph with 𝑂(𝑛3/2) edges.



Applications: APSP

Sparse paths: 

𝑢 𝑣

𝑁𝑘(𝑢)

𝑢′ 𝑣′

𝑁𝑘(𝑣)

𝑝𝑢

• We can focus on a sparse graph with 𝑶(𝒏𝟑/𝟐) edges.

• We can compute MSSP from ෩𝑶(𝒏𝟑/𝟒) sources.
• Can take 𝑘 = ෩𝑶(𝒏𝟏/𝟒).
• Now the 3 relevant matrices are sparse enough.



Applications: APSP

𝟐 + 𝝐 -approximation for unweighted APSP in 𝑂
log2 𝑛

𝜖
rounds 

𝑢 𝑣

𝑁𝑘(𝑢)

𝑢′ 𝑣′

𝑁𝑘(𝑣)

𝑝𝑢



Conclusion

• We show a fast algorithm for matrix multiplication 
that depends on the sparsity and is output-sensitive.

• Allows to build efficient distance tools.

• Together with hopsets: polylog algorithms for MSSP, 
APSP.



Summary

𝑂 log2𝑛/𝜖 • 2 + 𝜖 -approximation for 
unweighted undirected APSP

• 3 + 𝜖 -approximation for weighted 
undirected APSP

𝑂 log2𝑛/𝜖 1 + 𝜖 -approximation for weighted 

undirected MSSP with 𝑂(𝑛1/2) sources

𝑂 log2𝑛/𝜖 Near 3/2 -approximation for diameter

෨𝑂 𝑛1/6 Exact weighted undirected SSSP



Open Questions

• Can we get a (2 + 𝜖)-approximation for 
weighted APSP?

• Can we get sub-polynomial algorithm for 
exact SSSP? Or directed SSSP?


