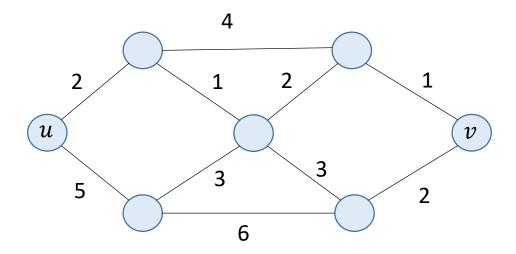
Fast Approximate Shortest Paths in the Congested Clique

Michal Dory, Technion

Joint work with: Keren Censor-Hillel (Technion), Janne Korhonen (IST Austria), Dean Leitersdorf (Technion)

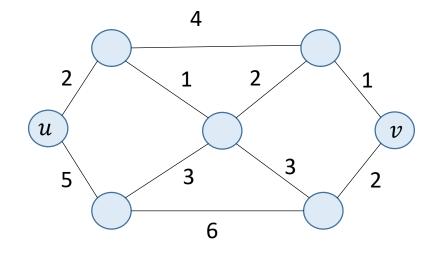
Distance Computation

- All-pairs shortest paths (APSP)
- Single-source shortest paths (SSSP)
- Multi-source shortest paths (MSSP)



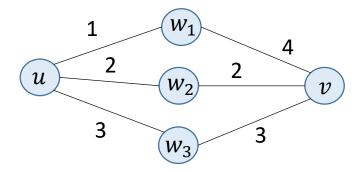
The Congested Clique model

- *n* vertices
- Synchronous rounds
- $\Theta(\log n)$ -bit messages to *all* vertices
- Input and output are local



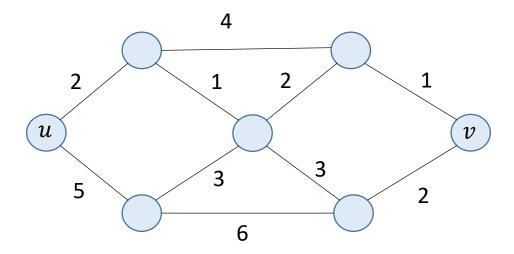
- A weighted adjacency matrix
- Distance product:

$$A^{2}[u,v] = \min_{w} A(u,w) + A(w,v)$$



 This is the minimum weight path between u and v of at most 2 edges

- Similarly, $A^{i}[u, v] = \text{minimum weight path}$ between u and v of at most i edges (hops).
- Our goal: compute A^n



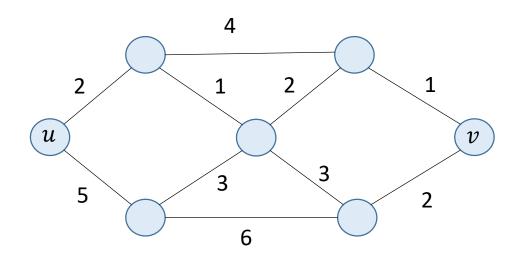
- Similarly, $A^{i}[u, v] = \text{minimum weight path}$ between u and v of at most i edges (hops).
- Our goal: compute A^n

$$A[u, v] = \infty$$

$$A^{2}[u, v] = \infty$$

$$A^{3}[u, v] = 7$$

$$A^{4}[u, v] = 6$$
...
$$A^{n}[u, v] = 6$$



- Our goal: compute A^n
- Requires $O(\log n)$ matrix multiplications:

$$A \rightarrow A^2 \rightarrow A^4 \rightarrow \dots \rightarrow A^n$$

How fast can we multiply matrices?

$O(n^{1-2/\omega})$ $= O(n^{0.158})$	Ring	[Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela '15]
$O(n^{1/3})$	Semiring	[Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela '15]
	Rectangular, Multiple instances, more	[Le Gall '16]

$O(n^{0.158})$	 Exact unweighted undirected APSP (1 + o(1))-approximation for weighted directed APSP 	[Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela '15]
$\tilde{O}(n^{1/3})$	Exact weighted directed APSP	[Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela '15]
$O(n^{0.2096})$	Exact APSP in directed graphs with constant weights	[Le Gall '16]

$O(n^{0.158})$	 Exact unweighted undirected APSP (1 + o(1))-approximation for weighted directed APSP 	[Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela '15]
$\tilde{O}(n^{1/3})$	Exact weighted directed APSP	[Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela '15]
$O(n^{0.2096})$	Exact APSP in directed graphs with constant weights	[Le Gall '16]

All complexities are polynomial!

What about approximations?

 We can compute a spanner: a sparse subgraph that approximates the distances.

$$\tilde{O}(n^{1/k})$$
 $(2k-1)$ -approximation for weighted undirected APSP

What about approximations?

 We can compute a spanner: a sparse subgraph that approximates the distances.

$$\tilde{O}(n^{1/k})$$
 $(2k-1)$ -approximation for weighted undirected APSP

Still polynomial for any constant k!

Computing Distances in the Congested Clique

Can we get constant approximation for APSP in sub-polynomial time?

Computing Distances in the Congested Clique

Can we get constant approximation for APSP in sub-polynomial time?

For SSSP:

 $O(\epsilon^{-3} \operatorname{polylog} n)$ -round $(1+\epsilon)$ -approximation [Becker, Karrenbauer, Krinninger, Lenzen '17]

Computing Distances in the Congested Clique

Can we get constant approximation for APSP in sub-polynomial time?

• For SSSP:

 $O(\epsilon^{-3} \operatorname{polylog} n)$ -round $(1 + \epsilon)$ -approximation [Becker, Karrenbauer, Krinninger, Lenzen '17]

Only for a single source!

Our Results: APSP

 $O(\log^2 n/\epsilon)$

- $(2 + \epsilon)$ -approximation for **unweighted** undirected APSP
- $(3 + \epsilon)$ -approximation for weighted undirected APSP

First polylog constant-factor approximation!

 $(2-\epsilon)$ -APSP implies MM [Dor, Halperin, Zwick '00 Korhonen, Suomela '18]

Our Results: MSSP and more

$O(\log^2 n/\epsilon)$	$(1+\epsilon)$ -approximation weighted undirected MSSP with $O(n^{1/2})$ sources
$O(\log^2 n/\epsilon)$	Near (3/2)-approximation for diameter
$\tilde{O}(n^{1/6})$	Exact weighted undirected SSSP

Previous results:

$\tilde{O}\!\left(n^{1/3} ight)$		[Censor-Hillel, Kaski, Korhonen,
	SSSP	Lenzen, Paz, Suomela '15]
$O(\epsilon^{-3} \operatorname{polylog} n)$		[Becker, Karrenbauer, Krinninger, Lenzen '17]

Our Techniques

• We can multiply *sparse* matrices faster:

$$O\left(1 + \frac{(\rho_S \rho_T)^{1/3}}{n^{1/3}}\right)$$
 Semiring, Sparse [Censor-Hillel, Leitersdorf, Turner '18]

- ρ_A = density of A, the average number of non-zero entries on a row
- Example: O(1) rounds for $O(n^{3/2})$ edges.

Our Techniques

- We can multiply sparse matrices faster.
- How can we use this?
 - Even if A is sparse, A^2 can be dense.
 - We want to compute distances in general graphs.

Our Techniques

- We can multiply sparse matrices faster.
- How can we use this?
 - Even if A is sparse, A^2 can be dense.
 - We want to compute distances in *general* graphs.

Many *building blocks* for distance computation are actually based on computations in *sparse* graphs

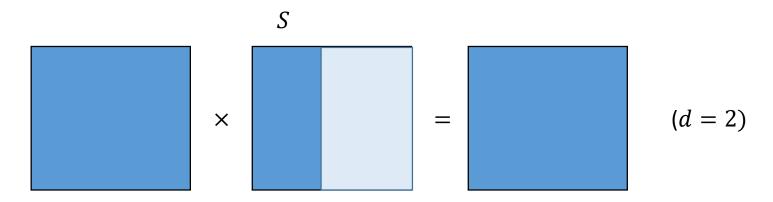
k-nearest: for each vertex, compute distances to k nearest vertices

- k-nearest: for each vertex, compute distances to k nearest vertices
- (S, d, k)-source detection: for each vertex, distances to k nearest sources in S, up to hop d

- k-nearest: for each vertex, compute distances to k nearest vertices
- (S, d, k)-source detection: for each vertex, distances to k nearest sources in S, up to hop d
- distances-through S: all distances through a set of sources S

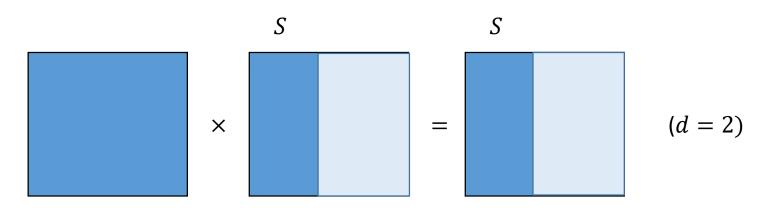
- k-nearest: for each vertex, compute distances to k nearest vertices
- (S, d, k)-source detection: for each vertex, distances to k nearest sources in S, up to hop d
- distances-through S: all distances through a set of sources S

• (S, d, k)-source detection: for each vertex, compute distances to k nearest sources in S, up to hop d



Multiplication of sparse matrix by dense matrix: previous MM algorithm is still polynomial

• (S, d, k)-source detection: for each vertex, compute distances to k nearest sources in S, up to hop d

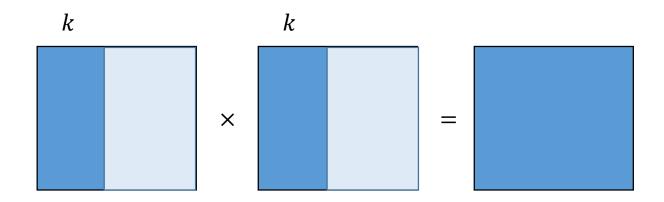


Output matrix is also sparse!

- k-nearest: for each vertex, compute distances to k nearest vertices
- (S, d, k)-source detection: for each vertex, distances to k nearest sources in S, up to hop d
- distances-through S: all distances through a set of sources S

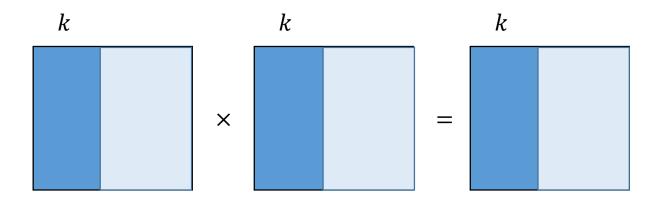
- k-nearest: for each vertex, compute distances to k nearest vertices
- (S, d, k)-source detection: for each vertex, distances to k nearest sources in S, up to hop d
- distances-through S: all distances through a set of sources S

k-nearest: for each vertex, compute distances to k nearest vertices



It's enough to look only at the k closest vertices to each vertex

k-nearest: for each vertex, compute distances to k nearest vertices



It's enough to look only at the k closest vertices to each vertex: also in the *output*

We don't know the identity of the k closest vertices before the computation

New Matrix Multiplication algorithm

• Previous algorithm:

$$O\left(1 + \frac{(\rho_S \rho_T)^{1/3}}{n^{1/3}}\right)$$
 Semiring, Sparse [Censor-Hillel, Leitersdorf, Turner '18]

• Our algorithm:

$$O\left(1 + \frac{(\rho_S \rho_T \rho_P)^{1/3}}{n^{2/3}}\right)$$
 Semiring, Sparse [Censor-Hillel, Dory, Korhonen, Leitersdorf, '19]

$$S$$
 × T = P

New Matrix Multiplication algorithm

Our algorithm:

$$O\left(1 + \frac{(\rho_S \rho_T \rho_P)^{1/3}}{n^{2/3}}\right)$$
 Semiring, Sparse [Censor-Hillel, Dory, Korhonen, Leitersdorf, '19]

- Depends also on the sparsity of the output matrix
- Even if we don't know the structure of the output matrix, we can *sparsify* the output matrix *on-the-fly*, keeping only ρ_P smallest entries for each row

Application: Distance Tools

k-nearest:

$$O\left(\left(\frac{k}{n^{2/3}}+1\right)\log k\right)$$
 rounds $O(\log n)$ for $k=n^{2/3}$

$$(S,d,k)$$
-source detection:
$$O\left(\left(\frac{m^{1/3}k^{2/3}}{n}+1\right)d\right) \text{ rounds } (m=\text{number of edges })$$

Work for directed weighted graphs

$$O\left(1 + \frac{(\rho_S \rho_T \rho_P)^{1/3}}{n^{2/3}}\right)$$
 Semiring, Sparse [Censor-Hillel, Dory, Korhonen, Leitersdorf, '19]

Application: Distance Tools

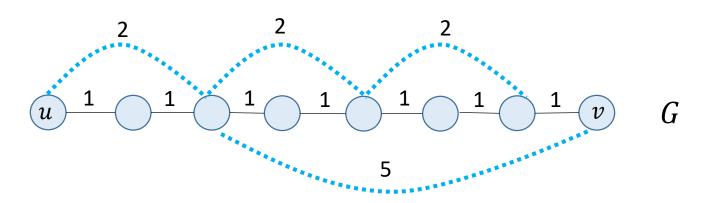
(S,d,k)-source detection: $O\left(\left(\frac{m^{1/3}k^{2/3}}{n}+1\right)d\right) \text{ rounds } (m=\text{number of edges })$

• To exploit the sparsity we need d = n multiplications - too expensive!

Solution: Hopsets

(β, ϵ) -hopset H:

A graph H = (V, E'), such that the β -hop distances in $G \cup H$ give $(1 + \epsilon)$ -approximation for the distances in G



Enough to look at β -hop distances!

Solution: Hopsets

(β, ϵ) -hopset H:

A graph H = (V, E'), such that the β -hop distances in $G \cup H$ give $(1 + \epsilon)$ -approximation for the distances in G

Our goal: to have small β and small running time t

What is known?

• We can get $\beta = t = O\left(\frac{\log\log n}{\epsilon}\right)^{\log\log n}$ [Elkin, Neiman '17]

Solution: Hopsets

(β, ϵ) -hopset H:

A graph H = (V, E'), such that the β -hop distances in $G \cup H$ give $(1 + \epsilon)$ -approximation for the distances in G

Our goal: to have small β and small running time t

What is known?

• We can get $\beta = t = O\left(\frac{\log\log n}{\epsilon}\right)^{\log\log n}$ [Elkin, Neiman '17]

Can we get a poly-logarithmic complexity?

Solution: Hopsets

(β, ϵ) -hopset H:

A graph H = (V, E'), such that the β -hop distances in $G \cup H$ give $(1 + \epsilon)$ -approximation for the distances in G

Our goal: to have small β and small running time t

What is known?

• We can get $\beta = t = O\left(\frac{\log\log n}{\epsilon}\right)^{\log\log n}$ [Elkin, Neiman '17]

Yes! we can get:
$$\beta = O\left(\frac{\log n}{\epsilon}\right)$$
, $t = O\left(\frac{\log^2 n}{\epsilon}\right)$

Solution: Hopsets

 (β, ϵ) -hopset H:

A graph H = (V, E'), such that the β -hop distances in $G \cup H$ give $(1 + \epsilon)$ -approximation for the distances in G

Our goal: to have small β and small running time t

• We can get:
$$\beta = O\left(\frac{\log n}{\epsilon}\right)$$
, $t = O\left(\frac{\log^2 n}{\epsilon}\right)$

Idea: using our *distance tools* we can implement efficiently the hopset construction of [Elkin, Neiman '17] [Huang, Pettie '19] [Thorup, Zwick '06]

Applications: MSSP

(β, ϵ) -hopset H:

A graph H = (V, E'), such that the β -hop distances in $G \cup H$ give $(1 + \epsilon)$ -approximation for the distances in G

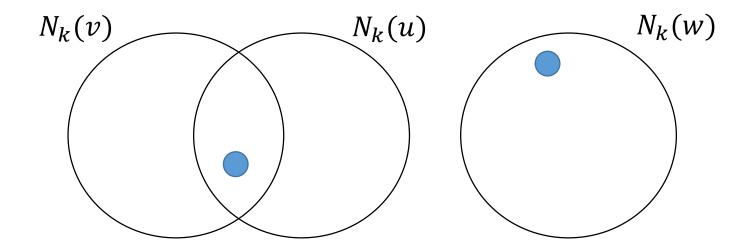
$$(S, d, k)$$
-source detection: $O\left(\left(\frac{m^{1/3}k^{2/3}}{n} + 1\right)d\right)$ rounds

• We run our (S, d, k)- source detection in $G \cup H$ with $d = \beta$: $(1 + \epsilon)$ -approximation for the distances of all vertices from S

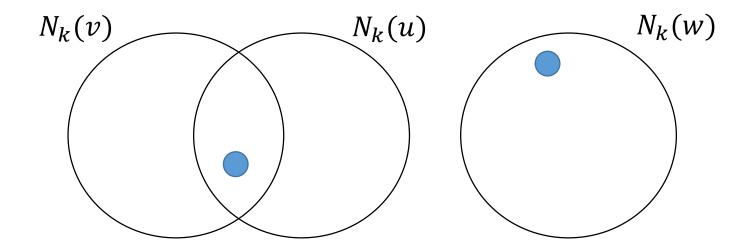
Complexity:
$$O\left(\left(\frac{|S|^{2/3}}{n^{1/3}} + \log n\right) \frac{\log n}{\epsilon}\right)$$

poly-logarithmic for $|S| = O(\sqrt{n})$

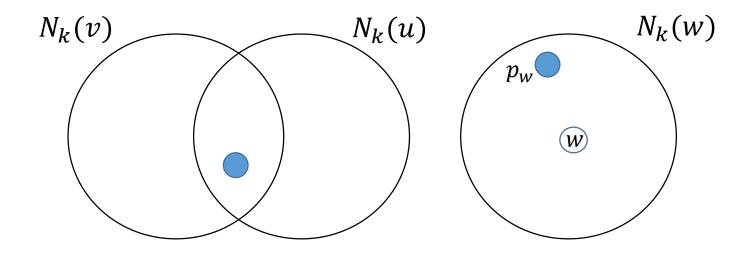
- We compute the $k = \tilde{O}(\sqrt{n})$ nearest vertices $N_k(v)$ for each v
- We compute a hitting set A of the sets $N_k(v)$ with $|A| = \tilde{O}(\sqrt{n})$



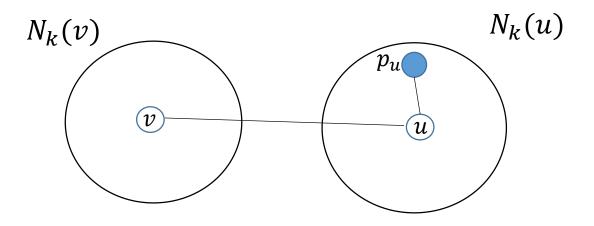
- We compute the $k = \tilde{O}(\sqrt{n})$ nearest vertices $N_k(v)$ for each v
- We compute a hitting set A of the sets $N_k(v)$ with $|A| = \tilde{O}(\sqrt{n})$: $O((\log\log n)^3)$ rounds [Parter, Yogev '18]



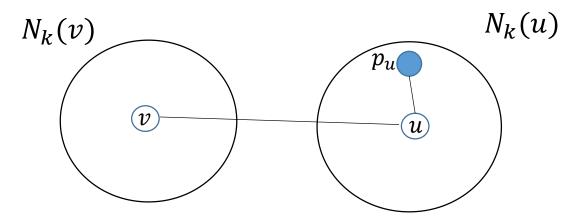
- For each v, let p_v = the closest vertex to v in $A \cap N_k(v)$
- We compute $(1+\epsilon)$ -approximate distances $\delta(u,v)$ from all vertices to A



- If $v \in N_k(u)$, u knows d(u, v).
- Otherwise, we estimate $\delta(u,v) = \delta(u,p_u) + \delta(p_u,v)$

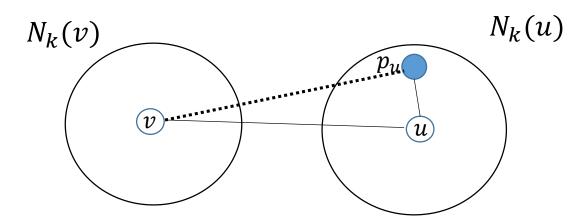


- If $v \in N_k(u)$, u knows d(u, v).
- Otherwise, we estimate $\delta(u,v) = \delta(u,p_u) + \delta(p_u,v)$



• $d(u, p_u) \le d(u, v)$

- If $v \in N_k(u)$, u knows d(u, v).
- Otherwise, we estimate $\delta(u,v) = \delta(u,p_u) + \delta(p_u,v)$



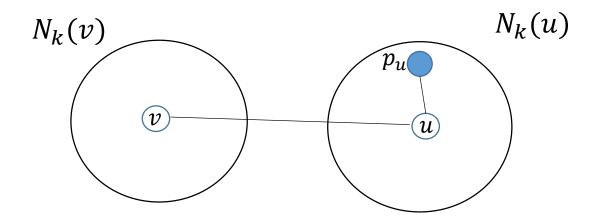
- $d(u, p_u) \le d(u, v)$
- $d(v, p_u) \le d(u, v) + d(u, p_u) \le 2d(u, v)$
- $\delta(u, p_u) + \delta(p_u, v)$ gives a $(3 + \epsilon)$ -approximation

Complexity:

- Computing the k-nearest: $O(\log n)$ time
- Computing a hitting set: $O((\log \log n)^3)$ time
- Computing distances to A: $O\left(\frac{\log^2 n}{\epsilon}\right)$ time

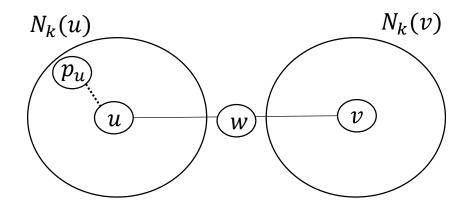
 $(3 + \epsilon)$ -approximation in $O\left(\frac{\log^2 n}{\epsilon}\right)$ rounds

Can we improve the approximation?



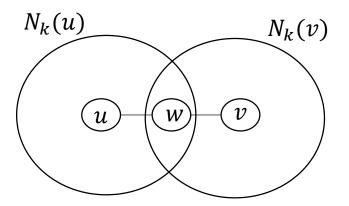
If $d(u,p_u) \leq \frac{d(u,v)}{2}$ then the same analysis shows a $(2+\epsilon)$ -approximation

Case 1:



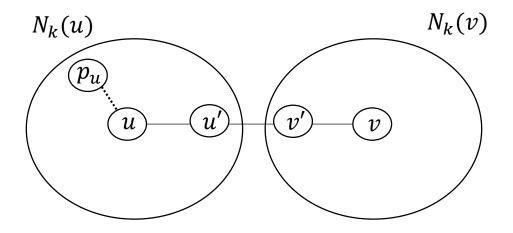
$$d(u, p_u) \le \frac{d(u, v)}{2}$$
 (2 + ϵ)-approximation

Case 2:

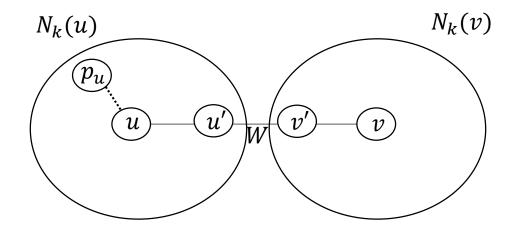


$$w \in N_k(u) \cap N_k(v)$$
 We can compute $d(u, v)$

<u>Case 3:</u>

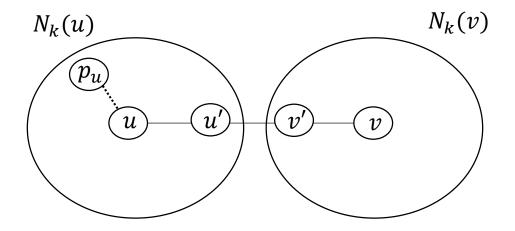


Case 3:



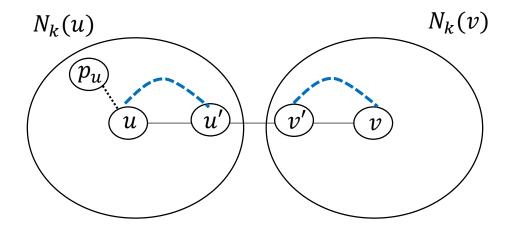
$$d(u, p_u) \le \frac{d(u, v) + \mathbf{W}}{2} \longrightarrow ((2 + \epsilon), (1 + \epsilon)\mathbf{W})$$
-approximation

Case 3:



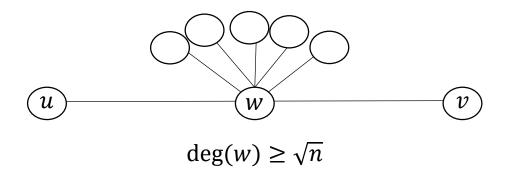
How do we get a $(2 + \epsilon)$ -approximation?

Case 3:

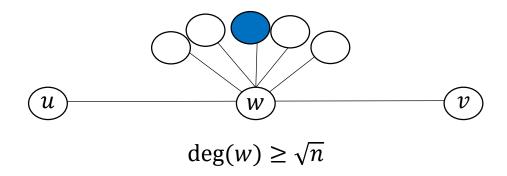


- We have a 3-hop shortest path between u and v
- However, the 3 relevant matrices are too dense

Dense paths:

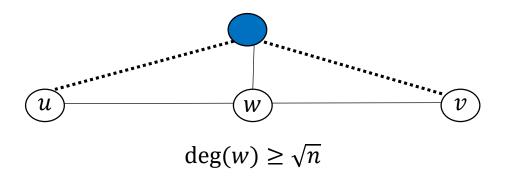


Dense paths:



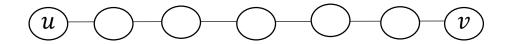
Compute a hitting set of size $\tilde{O}(\sqrt{n})$ for high-degree vertices

Dense paths:



The distance through the hitting set gives a +2 approximation

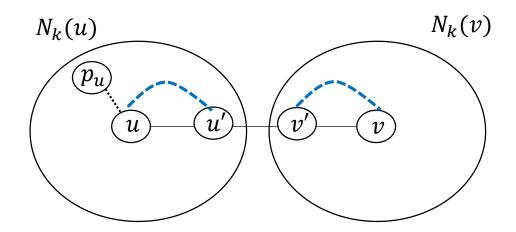
Sparse paths:



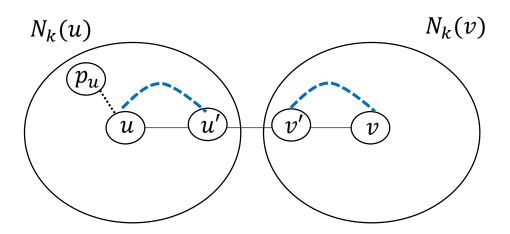
- All degrees are at most \sqrt{n}
- We can focus on a sparse graph with $O(n^{3/2})$ edges.

Sparse paths:

- We can focus on a sparse graph with $O(n^{3/2})$ edges.
- We can compute MSSP from $\tilde{O}(n^{3/4})$ sources.
- Can take $k = \widetilde{O}(n^{1/4})$.
- Now the 3 relevant matrices are sparse enough.



 $(2 + \epsilon)$ -approximation for **unweighted** APSP in $O\left(\frac{\log^2 n}{\epsilon}\right)$ rounds



Conclusion

- We show a fast algorithm for matrix multiplication that depends on the *sparsity* and is *output*-sensitive.
- Allows to build efficient distance tools.
- Together with hopsets: polylog algorithms for MSSP, APSP.

Summary

$O(\log^2 n/\epsilon)$	 (2 + ε)-approximation for unweighted undirected APSP (3 + ε)-approximation for weighted undirected APSP
$O(\log^2 n/\epsilon)$	$(1+\epsilon)$ -approximation for weighted undirected MSSP with $O(n^{1/2})$ sources
$O(\log^2 n/\epsilon)$	Near (3/2)-approximation for diameter
$\tilde{O}(n^{1/6})$	Exact weighted undirected SSSP

Open Questions

- Can we get a $(2 + \epsilon)$ -approximation for weighted APSP?
- Can we get sub-polynomial algorithm for exact SSSP? Or directed SSSP?