
Fast Approximate
Shortest Paths in the

Congested Clique
Michal Dory, Technion

Joint work with: Keren Censor-Hillel (Technion), Janne
Korhonen (IST Austria), Dean Leitersdorf (Technion)

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement no. 755839

Distance Computation

• All-pairs shortest paths (APSP)

• Single-source shortest paths (SSSP)

• Multi-source shortest paths (MSSP)

5

2 1

3

6

4

2 1

2
3

𝑢 𝑣

The Congested Clique model

• 𝑛 vertices

• Synchronous rounds

• Θ(log 𝑛)-bit messages
to all vertices

• Input and output are
local

5

2 1

3

6

4

2 1

2
3

𝑢 𝑣

Computing Distances using
Matrix Multiplication

• 𝐴 – weighted adjacency matrix

• Distance product:

𝐴2 𝑢, 𝑣 = min
𝑤

𝐴 𝑢,𝑤 + 𝐴 𝑤, 𝑣

• This is the minimum weight path between u and v
of at most 2 edges

𝑢 𝑣

𝑤1

𝑤2

𝑤3

1

3

2 2

3

4

• Similarly, 𝐴𝑖 𝑢, 𝑣 = minimum weight path
between 𝑢 and 𝑣 of at most 𝑖 edges (hops).

• Our goal: compute 𝐴𝑛

Computing Distances using
Matrix Multiplication

5

2 1

3

6

4

2 1

2
3

𝑢 𝑣

• Similarly, 𝐴𝑖 𝑢, 𝑣 = minimum weight path
between 𝑢 and 𝑣 of at most 𝑖 edges (hops).

• Our goal: compute 𝐴𝑛

Computing Distances using
Matrix Multiplication

5

2 1

3

6

4

2 1

2
3

𝑢 𝑣

𝐴 𝑢, 𝑣 = ∞
𝐴2 𝑢, 𝑣 = ∞
𝐴3 𝑢, 𝑣 = 7
𝐴4 𝑢, 𝑣 = 6

...
𝐴𝑛 𝑢, 𝑣 = 6

Computing Distances using
Matrix Multiplication

• Our goal: compute 𝐴𝑛

• Requires 𝑂 log 𝑛 matrix multiplications:

𝐴 → 𝐴2 → 𝐴4 → … → 𝐴𝑛

• How fast can we multiply matrices?

Computing Distances using
Matrix Multiplication

𝑂 𝑛1−2/𝜔

= 𝑂 𝑛0.158
Ring [Censor-Hillel, Kaski,

Korhonen, Lenzen, Paz,
Suomela ‘15]

𝑂 𝑛1/3 Semiring [Censor-Hillel, Kaski,
Korhonen, Lenzen, Paz,
Suomela ‘15]

Rectangular,
Multiple
instances, more

[Le Gall ‘16]

Computing Distances using
Matrix Multiplication

𝑂 𝑛0.158 • Exact unweighted undirected
APSP

• 1 + 𝑜 1 -approximation for

weighted directed APSP

[Censor-Hillel, Kaski,
Korhonen, Lenzen, Paz,
Suomela ‘15]

෨𝑂 𝑛1/3 Exact weighted directed APSP [Censor-Hillel, Kaski,
Korhonen, Lenzen, Paz,
Suomela ‘15]

𝑂 𝑛0.2096 Exact APSP in directed graphs
with constant weights

[Le Gall ‘16]

Computing Distances using
Matrix Multiplication

All complexities are polynomial!

𝑂 𝑛0.158 • Exact unweighted undirected
APSP

• 1 + 𝑜 1 -approximation for

weighted directed APSP

[Censor-Hillel, Kaski,
Korhonen, Lenzen, Paz,
Suomela ‘15]

෨𝑂 𝑛1/3 Exact weighted directed APSP [Censor-Hillel, Kaski,
Korhonen, Lenzen, Paz,
Suomela ‘15]

𝑂 𝑛0.2096 Exact APSP in directed graphs
with constant weights

[Le Gall ‘16]

What about approximations?

• We can compute a spanner: a sparse subgraph that
approximates the distances.

෨𝑂 𝑛1/𝑘 2𝑘 − 1 -approximation for
weighted undirected APSP

What about approximations?

• We can compute a spanner: a sparse subgraph that
approximates the distances.

Still polynomial for any constant 𝑘!

෨𝑂 𝑛1/𝑘 2𝑘 − 1 -approximation for
weighted undirected APSP

Computing Distances in the
Congested Clique

Can we get constant approximation for APSP

in sub-polynomial time?

Computing Distances in the
Congested Clique

Can we get constant approximation for APSP

in sub-polynomial time?

• For SSSP:

𝑂 𝜖−3polylog 𝑛 -round 1 + 𝜖 -approximation

[Becker, Karrenbauer, Krinninger, Lenzen ‘17]

Computing Distances in the
Congested Clique

Can we get constant approximation for APSP

in sub-polynomial time?

• For SSSP:

𝑂 𝜖−3polylog 𝑛 -round 1 + 𝜖 -approximation

[Becker, Karrenbauer, Krinninger, Lenzen ‘17]

Only for a single source!

Our Results: APSP

𝑂 log2𝑛/𝜖 • 2 + 𝜖 -approximation for unweighted
undirected APSP

• 3 + 𝜖 -approximation for weighted
undirected APSP

2 − 𝜖 -APSP implies MM [Dor, Halperin, Zwick ‘00
Korhonen, Suomela ‘18]

First polylog constant-factor approximation!

Our Results: MSSP and more

෨𝑂 𝑛1/3 Exact weighted
SSSP

[Censor-Hillel, Kaski, Korhonen,
Lenzen, Paz, Suomela ‘15]

𝑂 𝜖−3polylog 𝑛 1 + 𝜖 -SSSP [Becker, Karrenbauer,
Krinninger, Lenzen ‘17]

𝑂 log2𝑛/𝜖 1 + 𝜖 -approximation
weighted undirected MSSP

with 𝑂(𝑛1/2) sources

𝑂 log2𝑛/𝜖 Near 3/2 -approximation
for diameter

෨𝑂 𝑛1/6 Exact weighted undirected
SSSP

Previous results:

Our Techniques

• We can multiply sparse matrices faster:

• 𝜌𝐴= density of A, the average number of non-zero entries on
a row

• Example: 𝑂(1) rounds for 𝑂(𝑛3/2) edges.

𝑂 1 +
𝜌𝑆𝜌𝑇

1/3

𝑛1/3
Semiring, Sparse [Censor-Hillel, Leitersdorf,

Turner ‘18]

Our Techniques

• We can multiply sparse matrices faster.

• How can we use this?

- Even if 𝐴 is sparse, 𝐴2 can be dense.

- We want to compute distances in general graphs.

Our Techniques

• We can multiply sparse matrices faster.

• How can we use this?

- Even if 𝐴 is sparse, 𝐴2 can be dense.

- We want to compute distances in general graphs.

Many building blocks for distance computation are
actually based on computations in sparse graphs

Building blocks for distance computation

• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices

Building blocks for distance computation

• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices

• (𝑆, 𝑑, 𝑘)-source detection: for each vertex,
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑

Building blocks for distance computation

• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices

• (𝑆, 𝑑, 𝑘)-source detection: for each vertex,
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑

• distances-through 𝑆: all distances through a set of
sources 𝑆

Building blocks for distance computation

• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices

• (𝑆, 𝑑, 𝑘)-source detection: for each vertex,
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑

• distances-through 𝑆: all distances through a set of
sources 𝑆

Building blocks for distance computation

• (𝑆, 𝑑, 𝑘)-source detection: for each vertex, compute
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑

× =

𝑆

(𝑑 = 2)

Multiplication of sparse matrix by dense matrix:
previous MM algorithm is still polynomial

Building blocks for distance computation

• (𝑆, 𝑑, 𝑘)-source detection: for each vertex, compute
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑

× =

𝑆

(𝑑 = 2)

Output matrix is also sparse!

𝑆

Building blocks for distance computation

• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices

• (𝑆, 𝑑, 𝑘)-source detection: for each vertex,
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑

• distances-through 𝑆: all distances through a set of
sources 𝑆

Building blocks for distance computation

• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices

• (𝑆, 𝑑, 𝑘)-source detection: for each vertex,
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑

• distances-through 𝑆: all distances through a set of
sources 𝑆

Building blocks for distance computation

• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices

× =

𝑘 𝑘

It’s enough to look only at the 𝑘 closest
vertices to each vertex

Building blocks for distance computation

• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices

× =

𝑘 𝑘

It’s enough to look only at the 𝑘 closest
vertices to each vertex: also in the output

𝑘

We don’t know the identity of the 𝑘 closest vertices before the computation

New Matrix Multiplication algorithm

• Previous algorithm:

• Our algorithm:

𝑂 1 +
𝜌𝑆𝜌𝑇

1/3

𝑛1/3
Semiring,
Sparse

[Censor-Hillel, Leitersdorf,
Turner ‘18]

𝑂 1 +
𝜌𝑆𝜌𝑇𝜌𝑃

1/3

𝑛2/3
Semiring,
Sparse

[Censor-Hillel, Dory,
Korhonen, Leitersdorf, ‘19]

× =𝑆 𝑇 𝑃

New Matrix Multiplication algorithm

• Our algorithm:

𝑂 1 +
𝜌𝑆𝜌𝑇𝜌𝑃

1/3

𝑛2/3
Semiring,
Sparse

[Censor-Hillel, Dory,
Korhonen, Leitersdorf, ‘19]

• Depends also on the sparsity of the output matrix
• Even if we don’t know the structure of the output matrix,

we can sparsify the output matrix on-the-fly, keeping only
𝜌𝑃 smallest entries for each row

Application: Distance Tools

𝑂 1 +
𝜌𝑆𝜌𝑇𝜌𝑃

1/3

𝑛2/3
Semiring,
Sparse

[Censor-Hillel, Dory,
Korhonen, Leitersdorf, ‘19]

𝑘-nearest:

𝑂
𝑘

𝑛2/3
+ 1 log 𝑘 rounds 𝑂(log 𝑛) for 𝑘 = 𝑛2/3

(𝑆, 𝑑, 𝑘)-source detection:

𝑂
𝑚1/3𝑘2/3

𝑛
+ 1 𝑑 rounds (𝑚 = number of edges)

Work for directed weighted graphs

Application: Distance Tools

× =

𝑘 𝑘

• To exploit the sparsity we need 𝒅 = 𝒏 multiplications -
too expensive!

(𝑆, 𝑑, 𝑘)-source detection:

𝑂
𝑚1/3𝑘2/3

𝑛
+ 1 𝑑 rounds (𝑚 = number of edges)

Solution: Hopsets

(𝛽, 𝜖)-hopset 𝐻:
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in
𝐺 ∪ 𝐻 give 1 + 𝜖 -approximation for the distances in 𝐺

𝐺

5

22 2

1 1 1 1 1 1 1
𝑢 𝑣

Enough to look at 𝛽-hop distances!

Solution: Hopsets

(𝛽, 𝜖)-hopset 𝐻:
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in
𝐺 ∪ 𝐻 give 1 + 𝜖 -approximation for the distances in 𝐺

Our goal: to have small 𝛽 and small running time 𝑡

What is known?

• We can get 𝛽 = 𝑡 = 𝑂
log log 𝑛

𝜖

log log 𝑛

[Elkin, Neiman ‘17]

Solution: Hopsets

(𝛽, 𝜖)-hopset 𝐻:
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in
𝐺 ∪ 𝐻 give 1 + 𝜖 -approximation for the distances in 𝐺

Our goal: to have small 𝛽 and small running time 𝑡

What is known?

• We can get 𝛽 = 𝑡 = 𝑂
log log 𝑛

𝜖

log log 𝑛

[Elkin, Neiman ‘17]

Can we get a poly-logarithmic complexity?

Solution: Hopsets

(𝛽, 𝜖)-hopset 𝐻:
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in
𝐺 ∪ 𝐻 give 1 + 𝜖 -approximation for the distances in 𝐺

Our goal: to have small 𝛽 and small running time 𝑡

What is known?

• We can get 𝛽 = 𝑡 = 𝑂
log log 𝑛

𝜖

log log 𝑛

[Elkin, Neiman ‘17]

Yes! we can get: 𝛽 = 𝑂
log 𝑛

𝜖
, 𝑡 = 𝑂

log2 𝑛

𝜖

Solution: Hopsets

(𝛽, 𝜖)-hopset 𝐻:
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in
𝐺 ∪ 𝐻 give 1 + 𝜖 -approximation for the distances in 𝐺

Our goal: to have small 𝛽 and small running time 𝑡

• We can get: 𝛽 = 𝑂
log 𝑛

𝜖
, 𝑡 = 𝑂

log2 𝑛

𝜖

Idea: using our distance tools we can implement
efficiently the hopset construction of [Elkin, Neiman ‘17]
[Huang, Pettie ‘19] [Thorup, Zwick ‘06]

Applications: MSSP

(𝛽, 𝜖)-hopset 𝐻:
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in 𝐺 ∪ 𝐻
give 1 + 𝜖 -approximation for the distances in 𝐺

(𝑆, 𝑑, 𝑘)-source detection: 𝑂
𝑚1/3𝑘2/3

𝑛
+ 1 𝑑 rounds

• We run our (𝑆, 𝑑, 𝑘)- source detection in 𝐺 ∪ 𝐻 with 𝑑 = 𝛽:
1 + 𝜖 −approximation for the distances of all vertices

from 𝑆

Complexity: 𝑂
𝑆 2/3

𝑛1/3
+ log 𝑛

log 𝑛

𝜖

poly-logarithmic for 𝑆 = 𝑂 𝑛

Applications: APSP

• We compute the 𝑘 = ෨𝑂(𝑛) nearest vertices 𝑁𝑘(𝑣) for each 𝑣

• We compute a hitting set 𝑨 of the sets 𝑁𝑘(𝑣) with 𝐴 = ෨𝑂(𝑛)

𝑁𝑘(𝑣) 𝑁𝑘(𝑢) 𝑁𝑘(𝑤)

Applications: APSP

• We compute the 𝑘 = ෨𝑂(𝑛) nearest vertices 𝑁𝑘(𝑣) for each 𝑣

• We compute a hitting set 𝑨 of the sets 𝑁𝑘(𝑣) with 𝐴 = ෨𝑂 𝑛 :
𝑂(loglog𝑛 3) rounds [Parter, Yogev ’18]

𝑁𝑘(𝑣) 𝑁𝑘(𝑢) 𝑁𝑘(𝑤)

Applications: APSP

• For each 𝑣, let 𝑝v = the closest vertex to 𝑣 in 𝐴 ∩ 𝑁𝑘 𝑣

• We compute (1 + 𝜖)-approximate distances 𝛿(𝑢, 𝑣) from all
vertices to 𝐴

𝑁𝑘(𝑣) 𝑁𝑘(𝑢) 𝑁𝑘(𝑤)

𝑤

𝑝𝑤

Applications: APSP

• If 𝑣 ∈ 𝑁𝑘(𝑢), 𝑢 knows 𝑑(𝑢, 𝑣).

• Otherwise, we estimate 𝛿 𝑢, 𝑣 = 𝛿 𝑢, 𝑝𝑢 + 𝛿(𝑝𝑢, 𝑣)

𝑁𝑘(𝑣) 𝑁𝑘(𝑢)

𝑣 𝑢

𝑝𝑢

Applications: APSP

• If 𝑣 ∈ 𝑁𝑘(𝑢), 𝑢 knows 𝑑(𝑢, 𝑣).

• Otherwise, we estimate 𝛿 𝑢, 𝑣 = 𝛿 𝑢, 𝑝𝑢 + 𝛿(𝑝𝑢, 𝑣)

𝑁𝑘(𝑣) 𝑁𝑘(𝑢)

𝑣 𝑢

𝑝𝑢

• 𝑑 𝑢, 𝑝𝑢 ≤ 𝑑 𝑢, 𝑣

Applications: APSP

• If 𝑣 ∈ 𝑁𝑘(𝑢), 𝑢 knows 𝑑(𝑢, 𝑣).

• Otherwise, we estimate 𝛿 𝑢, 𝑣 = 𝛿 𝑢, 𝑝𝑢 + 𝛿(𝑝𝑢, 𝑣)

𝑁𝑘(𝑣) 𝑁𝑘(𝑢)

𝑣 𝑢

𝑝𝑢

• 𝑑 𝑢, 𝑝𝑢 ≤ 𝑑 𝑢, 𝑣
• 𝑑 𝑣, 𝑝𝑢 ≤ 𝑑 𝑢, 𝑣 + 𝑑 𝑢, 𝑝𝑢 ≤ 2𝑑(𝑢, 𝑣)
• 𝛿 𝑢, 𝑝𝑢 + 𝛿 𝑝𝑢, 𝑣 gives a 𝟑 + 𝝐 -approximation

Applications: APSP

Complexity:

• Computing the 𝑘-nearest: 𝑂(log 𝑛) time

• Computing a hitting set: 𝑂(loglog𝑛 3) time

• Computing distances to 𝐴: 𝑂
log2 𝑛

𝜖
time

3 + 𝜖 -approximation in 𝑂
log2 𝑛

𝜖
rounds

Applications: APSP

Can we improve the approximation?

𝑁𝑘(𝑣) 𝑁𝑘(𝑢)

𝑣 𝑢

𝑝𝑢

If 𝑑 𝑢, 𝑝𝑢 ≤
𝑑 𝑢,𝑣

2
then the same analysis shows a (2 + 𝜖)-

approximation

Applications: APSP

Case 1:

𝑑 𝑢, 𝑝𝑢 ≤
𝑑 𝑢,𝑣

2
(2 + 𝜖)-approximation

𝑢 𝑣𝑤

𝑁𝑘(𝑣)

𝑝𝑢

𝑁𝑘(𝑢)

Applications: APSP

Case 2:

𝑤 ∈ 𝑁𝑘(𝑢) ∩ 𝑁𝑘(𝑣) We can compute 𝑑(𝑢, 𝑣)

𝑢 𝑣𝑤

𝑁𝑘(𝑢) 𝑁𝑘(𝑣)

Applications: APSP

Case 3:

𝑢 𝑣

𝑁𝑘(𝑢)

𝑢′ 𝑣′

𝑁𝑘(𝑣)

𝑝𝑢

Applications: APSP

Case 3:

𝑑 𝑢, 𝑝𝑢 ≤
𝑑 𝑢,𝑣 +𝑾

2
2 + 𝜖 , 1 + 𝜖 𝑾 -approximation

𝑢 𝑣

𝑁𝑘(𝑢)

𝑢′ 𝑣′

𝑁𝑘(𝑣)

𝑝𝑢

𝑊

Applications: APSP

Case 3:

𝑢 𝑣

𝑁𝑘(𝑢)

𝑢′ 𝑣′

𝑁𝑘(𝑣)

𝑝𝑢

How do we get a 2 + 𝜖 -approximation?

Applications: APSP

Case 3:

𝑢 𝑣

𝑁𝑘(𝑢)

𝑢′ 𝑣′

𝑁𝑘(𝑣)

𝑝𝑢

• We have a 3-hop shortest path between 𝑢 and 𝑣
• However, the 3 relevant matrices are too dense

Applications: APSP

Dense paths:

𝑢 𝑣𝑤

deg(𝑤) ≥ 𝑛

Applications: APSP

Dense paths:

𝑢 𝑣𝑤

deg(𝑤) ≥ 𝑛

Compute a hitting set of size ෨𝑂 𝑛 for high-degree vertices

Applications: APSP

Dense paths:

𝑢 𝑣𝑤

deg(𝑤) ≥ 𝑛

The distance through the hitting set gives a +2 approximation

Applications: APSP

Sparse paths:

𝑢 𝑣

• All degrees are at most 𝑛
• We can focus on a sparse graph with 𝑂(𝑛3/2) edges.

Applications: APSP

Sparse paths:

𝑢 𝑣

𝑁𝑘(𝑢)

𝑢′ 𝑣′

𝑁𝑘(𝑣)

𝑝𝑢

• We can focus on a sparse graph with 𝑶(𝒏𝟑/𝟐) edges.

• We can compute MSSP from ෩𝑶(𝒏𝟑/𝟒) sources.
• Can take 𝑘 = ෩𝑶(𝒏𝟏/𝟒).
• Now the 3 relevant matrices are sparse enough.

Applications: APSP

𝟐 + 𝝐 -approximation for unweighted APSP in 𝑂
log2 𝑛

𝜖
rounds

𝑢 𝑣

𝑁𝑘(𝑢)

𝑢′ 𝑣′

𝑁𝑘(𝑣)

𝑝𝑢

Conclusion

• We show a fast algorithm for matrix multiplication
that depends on the sparsity and is output-sensitive.

• Allows to build efficient distance tools.

• Together with hopsets: polylog algorithms for MSSP,
APSP.

Summary

𝑂 log2𝑛/𝜖 • 2 + 𝜖 -approximation for
unweighted undirected APSP

• 3 + 𝜖 -approximation for weighted
undirected APSP

𝑂 log2𝑛/𝜖 1 + 𝜖 -approximation for weighted

undirected MSSP with 𝑂(𝑛1/2) sources

𝑂 log2𝑛/𝜖 Near 3/2 -approximation for diameter

෨𝑂 𝑛1/6 Exact weighted undirected SSSP

Open Questions

• Can we get a (2 + 𝜖)-approximation for
weighted APSP?

• Can we get sub-polynomial algorithm for
exact SSSP? Or directed SSSP?

