Fast Approximate
Shortest Paths in the
Congested Cligue

Michal Dory, Technion

Joint work with: Keren Censor-Hillel (Technion), Janne
Korhonen (IST Austria), Dean Leitersdorf (Technion)

Distance Computation

* All-pairs shortest paths (APSP)
* Single-source shortest paths (SSSP)
e Multi-source shortest paths (IMSSP)

The Congested Cligue model

* n vertices

* Synchronous rounds

* O(log n)-bit messages
to all vertices

* Input and output are
local

Computing Distances using
Matrix Multiplication

A — weighted adjacency matrix
 Distance product:
A?[u,v] = minA(u,w) + A(w, v)
w

* This is the minimum weight path between u and v
of at most 2 edges

Computing

Distances using

Matrix Multiplication

e Similarly, A'[u, v] = minimum weight path
between u and v of at most i edges (hops).

e OQur goal: compute A™

Computing

Distances using

Matrix Multiplication

e Similarly, A'[u, v] = minimum weight path
between u and v of at most i edges (hops).

e OQur goal: compute A™

Alu,v] = o
A?[u,v] = oo
Adlu,v] =7
A*u,v] =6

A u,v] =6

Computing

Distances using

Matrix Multiplication

e OQur goal: compute A™

* Requires O(logn) matrix multiplications:

A > A5 A5 ..o A"

* How fast can we multiply matrices?

Computing

Distances using

Matrix Multiplication

O(nl‘z/‘“) Ring [Censor-Hillel, Kaski,
= 0(n%1°9%) Korhonen, Lenzen, Paz,
Suomela “15]
0(nl/3) Semiring [Censor-Hillel, Kaski,

Korhonen, Lenzen, Paz,
Suomela ‘15]

Rectangular,
Multiple
instances, more

[Le Gall “16]

Computing Distances using
Matrix Multiplication

0 (n%1°8) | ¢ Exact unweighted undirected | [Censor-Hillel, Kaski,
APSP Korhonen, Lenzen, Paz,

» (1 + o(1))-approximation for | Suomela “15]
weighted directed APSP

O(nl/?’) Exact weighted directed APSP | [Censor-Hillel, Kaski,
Korhonen, Lenzen, Paz,
Suomela ‘15]

0 (n°299%)| Exact APSP in directed graphs [Le Gall ‘16]
with constant weights

Computing Distances using
Matrix Multiplication

0 (n%1°8) | ¢ Exact unweighted undirected | [Censor-Hillel, Kaski,
APSP Korhonen, Lenzen, Paz,

» (1 + o(1))-approximation for | Suomela “15]
weighted directed APSP

6(n1/3) Exact weighted directed APSP | [Censor-Hillel, Kaski,
Korhonen, Lenzen, Paz,
Suomela ‘15]

0 (n%299%)| Exact APSP in directed graphs [Le Gall ‘16]
with constant weights

All complexities are polynomial!

What about approximations?

* We can compute a spanner: a sparse subgraph that
approximates the distances.

0(n*/*) | (2k — 1)-approximation for
weighted undirected APSP

What about approximations?

* We can compute a spanner: a sparse subgraph that
approximates the distances.

0(n*/*) | (2k — 1)-approximation for
weighted undirected APSP

Still polynomial for any constant k!

Computing Distances in the
Congested Clique

Can we get constant approximation for APSP
in sub-polynomial time?

Computing Distances in the
Congested Clique

Can we get constant approximation for APSP

in sub-polynomial time?

* For SSSP:
0 (e 3polylog n)-round (1 + €)-approximation

[Becker, Karrenbauer, Krinninger, Lenzen ‘17]

Computing Distances in the
Congested Clique

Can we get constant approximation for APSP

in sub-polynomial time?

* For SSSP:
0 (e 3polylog n)-round (1 + €)-approximation

[Becker, Karrenbauer, Krinninger, Lenzen ‘17]

Only for a single source!

Our Results: APSP

O(log®n/e) |* (2 + e)-approximation for unweighted

undirected APSP
* (3 + €)-approximation for weighted
undirected APSP

First polylog constant-factor approximation!

(2 — €)-APSP implies MM

[Dor, Halperin, Zwick ‘00
Korhonen, Suomela ‘18]

Our

Results: MSSP and more

0(log?n/e) (1 + €)-approximation
weighted undirected MISSP
with 0(n'/?) sources

0(log?n/e) Near (3/2)-approximation
for diameter

0(n'/6) Exact weighted undirected
SSSP

Previous results:

0'(n1/3)

Exact weighted | [Censor-Hillel, Kaski, Korhonen,
SSSP Lenzen, Paz, Suomela ‘15]

0(e 3polylogn) | (1 + €)-SSSP [Becker, Karrenbauer,

Krinninger, Lenzen ‘17]

Our Techniques

* We can multiply sparse matrices faster:

(pspr)/3\ | Semiring, Sparse | [Censor-Hillel, Leitersdorf,
o1+ nl/3 Turner ‘18]

* p,=density of A, the average number of non-zero entries on
a row

* Example: 0(1) rounds for 0(n3/2) edges.

Our Techniques

* We can multiply sparse matrices faster.

e How can we use this?

- Even if A is sparse, A% can be dense.

- We want to compute distances in general graphs.

Our Techniques

* We can multiply sparse matrices faster.

How can we use this?

- Even if A is sparse, A% can be dense.

- We want to compute distances in general graphs.

Many building blocks for distance computation are
actually based on computations in sparse graphs

Building blocks for distance computation

* k-nearest: for each vertex, compute distances to k
nearest vertices

Building blocks for distance computation

* k-nearest: for each vertex, compute distances to k
nearest vertices

* (5,d, k)-source detection: for each vertex,
distances to k nearest sources in S, up to hop d

Building blocks for distance computation

* k-nearest: for each vertex, compute distances to k
nearest vertices

* (5,d, k)-source detection: for each vertex,
distances to k nearest sources in S, up to hop d

* distances-through S: all distances through a set of
sources S

Building blocks for distance computation

* k-nearest: for each vertex, compute distances to k
nearest vertices

* (5,d, k)-source detection: for each vertex,
distances to k nearest sources in S, up to hop d

* distances-through S: all distances through a set of
sources S

Building blocks for distance computation

* (S,d, k)-source detection: for each vertex, compute
distances to k nearest sources in S, up to hop d

S

(d=2)

Multiplication of sparse matrix by dense matrix:
previous MM algorithm is still polynomial

Building blocks for distance computation

* (S,d, k)-source detection: for each vertex, compute
distances to k nearest sources in S, up to hop d

S S

(d=2)

Output matrix is also sparse!

Building blocks for distance computation

* k-nearest: for each vertex, compute distances to k
nearest vertices

* (5,d, k)-source detection: for each vertex,
distances to k nearest sources in S, up to hop d

* distances-through S: all distances through a set of
sources S

Building blocks for distance computation

* k-nearest: for each vertex, compute distances to k
nearest vertices

* (5,d, k)-source detection: for each vertex,
distances to k nearest sources in S, up to hop d

* distances-through S: all distances through a set of
sources S

Building blocks for distance computation

 k-nearest: for each vertex, compute distances to k
nearest vertices

k

It’s enough to look only at the k closest
vertices to each vertex

Building blocks for distance computation

* k-nearest: for each vertex, compute distances to k
nearest vertices

k

It’s enough to look only at the k closest
vertices to each vertex: also in the output

We don’t know the identity of the k closest vertices before the computation

New Matrix Multiplication algorithm

* Previous algorithm:

(pspr)'/?) | Semiring, [Censor-Hillel, Leitersdorf,
o\t nl/3 Sparse Turner ‘18]
e Our algorithm:
(psprpp)*/? | Semiring, [Censor-Hillel, Dory,
o\t n?/3 Sparse Korhonen, Leitersdorf, “19]

x

New Matrix Multiplication algorithm

e Our algorithm:

(pSprP)1/3
0 (1 + 273

)

Semiring,
Sparse

[Censor-Hillel, Dory,
Korhonen, Leitersdorf, ‘19]

* Depends also on the sparsity of the output matrix
* Even if we don’t know the structure of the output matrix,
we can sparsify the output matrix on-the-fly, keeping only

pp smallest entries for each row

Application: Distance Tools

k-nearest:

0 ((nf/g + 1) log k) rounds [> 0(logn) for k = n?/3

(S,d, k)-source detection:

m1/3k2/3
0, (+ 1) d | rounds (m = number of edges)

n

Work for directed weighted graphs

(psprpp)'/? | Semiring, [Censor-Hillel, Dory,
o\t n2/3 Sparse Korhonen, Leitersdorf, ‘19]

Application: Distance Tools

(S, d, k)-source detection:

1/31,2/3
0, ((m ey 1) d> rounds (m = number of edges)

n

* To exploit the sparsity we need d = n multiplications -
too expensive!

Solution: Hopsets

(B, €)-hopset H:
A graph H = (V,E"), such that the f-hop distances in
G U H give (1 + €)-approximation for the distances in G

.

.
.
.
.
.
.
““
.
.
L)
.
“

)
at®
lllllll

Enough to look at 5-hop distances!

Solution: Hopsets

(B, €)-hopset H:
A graph H = (V,E"), such that the f-hop distances in
G U H give (1 + €)-approximation for the distances in G

Our goal: to have small § and small running time t

What is known?

log log n)loglogn
€

* Wecanget [=t=0(
[Elkin, Neiman ‘17]

Solution: Hopsets

(B, €)-hopset H:
A graph H = (V,E"), such that the f-hop distances in
G U H give (1 + €)-approximation for the distances in G

Our goal: to have small § and small running time t

What is known?

log log n)loglogn
€

* Wecanget [=t=0(
[Elkin, Neiman ‘17]

Can we get a poly-logarithmic complexity?

Solution: Hopsets

(B, €)-hopset H:
A graph H = (V,E"), such that the f-hop distances in
G U H give (1 + €)-approximation for the distances in G

Our goal: to have small § and small running time t

What is known?

log log n)loglogn
€

* Wecanget [=t=0(
[Elkin, Neiman ‘17]

Yes! we can get: § = O (log n), t=20 (1og2 n)

€ €

Solution: Hopsets

(B, €)-hopset H:
A graph H = (V,E"), such that the f-hop distances in
G U H give (1 + €)-approximation for the distances in G

Our goal: to have small § and small running time t

* Wecanget:f =0 (logn), t=20 (1og2 n)

€ €

Ildea: using our distance tools we can implement

efficiently the hopset construction of [Elkin, Neiman ‘17]
[Huang, Pettie ‘19] [Thorup, Zwick ‘06]

Applications: MSSP

(B, €)-hopset H:
A graph H = (V,E"), such that the f-hop distances in G U H
give (1 + €)-approximation for the distances in G

m1/312/3

n

(5, d, k)-source detection: O ((+ 1) d) rounds

e Werunour (§,d,k)-source detectionin G U H withd = [3:
(1 + e)-approximation for the distances of all vertices
from S

- NEE logn
Complemty.O((nl/3 +logn) -)

) poly-logarithmic for |S| = 0 (V1)

Applications: APSP

* We compute the k = 0(y/n) nearest vertices Ny (v) for each v
* We compute a hitting set 4 of the sets N, (v) with |4] = 0(\yn)

Ni (v) Ni (u) Ny (w)

Applications: APSP

* We compute the k = 0(y/n) nearest vertices Ny (v) for each v

* We compute a hitting set 4 of the sets N, (v) with |4] = 0(v/n):
0((loglogn)?) rounds [Parter, Yogev '18]

Ni (v) Ni (u) Ny (w)

Applications: APSP

 For each v, let p, = the closest vertex to vin A N N, (v)

* We compute (1 + €)-approximate distances 6 (u, v) from all
verticesto 4

Ni (v) Ni (u) Ny (w)

Applications: APSP

* If v € Ni(u), u knows d(u, v).
 Otherwise, we estimate 6 (u, v) = 6 (u, py) + 6(py, v)

N, (v) Ny (u)

-

Applications: APSP

* If v € Ni(u), u knows d(u, v).
 Otherwise, we estimate 6 (u, v) = 6 (u, py) + 6(py, v)

N, (v) Ny (u)
pug

e d(u,py) <d(u,v)

Applications: APSP

* If v € Ni(u), u knows d(u, v).
 Otherwise, we estimate 6 (u, v) = 6 (u, py) + 6(py, v)

N, (v) Ny (w)

e d(u,py) <d(u,v)
e d(v,py,) <du,v)+d(u,p,) < 2d(u,v)
e 6(u,py) + 6(py, v) gives a (3 + €)-approximation

Applications: APSP

Complexity:

* Computing the k-nearest: O(logn) time
 Computing a hitting set: 0((loglogn)3) time

2

log“n

 Computing distances to A: O () time

\

(3 + €)-approximation in O (

€

log? n

)rounds

€

Applications: APSP

Can we improve the approximation?

N, (v) Ny (u)

Pui
d(u,v)

If d(u,p,) < —, then the same analysis shows a (2 + €)-
approximation

Applications: APSP

Case 1:

d(u,p,) < > ‘ (2 + €)-approximation

Applications: APSP

Case 2:

Ny (u) N, (v)

w € Ni(u) N N, (v) ‘ We can compute d(u, v)

Applications: APSP

Case 3:

Applications: APSP

Case 3:

d(u,p,) < d(u'?JrW # ((2 +¢€),(1+ e)W)—approximation

Applications: APSP

Case 3:

How do we get a (2 + €)-approximation?

Applications: APSP

Case 3:

 We have a 3-hop shortest path between u and v
 However, the 3 relevant matrices are too dense

Applications: APSP

Dense paths:

deg(w) = vn

Applications: APSP

Dense paths:

deg(w) = vn

Compute a hitting set of size 0(y/n) for high-degree vertices

Applications: APSP

Dense paths:

deg(w) = vn

The distance through the hitting set gives a +2 approximation

Applications: APSP

Sparse paths:

OO O O OO

« All degrees are at most y/n
* We can focus on a sparse graph with 0(n3/2) edges.

Applications: APSP

Sparse paths:

* We can focus on a sparse graph with 0(n3/2) edges.
* We can compute MSSP from 0 (n3/%) sources.

* Cantake k = O(n'/%).

* Now the 3 relevant matrices are sparse enough.

Ny (u) Ny (v)

Applications: APSP

log? n

(2 + €)-approximation for unweighted APSP in O () rounds

€

Ny (w) Ni(v)

Conclusion

* We show a fast algorithm for matrix multiplication
that depends on the sparsity and is output-sensitive.

e Allows to build efficient distance tools.

* Together with hopsets: polylog algorithms for MSSP,
APSP.

summary

O(log?n/e) |+ (2 + €)-approximation for
unweighted undirected APSP

* (3 + €)-approximation for weighted
undirected APSP

O(log®n/e) | (1 + €)-approximation for weighted
undirected MSSP with 0(n'/?) sources

O(log?n/e) |Near (3/2)-approximation for diameter

0(n'/®) Exact weighted undirected SSSP

Open Questions

* Can we get a (2 + €)-approximation for
weighted APSP?

e Can we get sub-polynomial algorithm for
exact SSSP? Or directed SSSP?

