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Spanners

A 𝒌-spanner of a graph 𝐺 is a subgraph of 𝐺
that preserves distances up to a multiplicative 
factor of 𝑘.
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Spanners

• There are many constructions which give a global 
guarantee on the size of the spanner:

2𝑘 − 1 -spanners with 𝑂(𝑛1+1/𝑘) edges

• This is optimal in the worst case assuming Erdős's
girth conjecture.
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Spanner Approximation

• What about approximating the minimum 𝑘-
spanner?

Number of edges ≤ 𝛼 ∙ 𝑂𝑃𝑇

• There are graphs where any 2-spanner has Ω(𝑛2)
edges, this is also true for 𝑘-spanners in directed
graphs.
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In the sequential setting:

• 2-spanner:  𝑂 log
𝐸

𝑉
-approximation [Kortsarz and 

Peleg 1994]

• Directed 𝑘-spanner: 𝑂 𝑛 log 𝑛 -approximation 
[Berman, Bhattacharyya, Makarychev, Raskhodnikova and 
Yaroslavtsev 2013]

Hardness Results:

• 2-spanner: Ω(log 𝑛) [Kortsarz 2001]

• Directed 𝑘-spanner: Ω(2(log
1−𝜀 𝑛))[Elkin and Peleg 2007]

• Undirected 𝑘-spanner: Ω(2(log
1−𝜀 𝑛)/𝑘) [Dinitz, Kortsarz

and  Raz 2016]
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The Distributed Models

𝑛 vertices exchange messages in synchronous rounds
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The model Message size

LOCAL unbounded

CONGEST Θ log 𝑛 bits 



In the LOCAL model

Directed 𝒌-spanners: 
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Approximation Number of rounds

𝑂 𝑛 log 𝑛 𝑂(𝑘 log 𝑛) [Dinitz and Nazari, 2017]

𝑂(𝑛𝜖) constant [Barenboim, Elkin and 
Gavoille, 2016]

1 + 𝜖 𝑂(𝑝𝑜𝑙𝑦(log 𝑛 /𝜖)) Our Results

𝟐-spanners: 

Approximation Number of rounds

𝑂 log 𝑛 𝑂(log 𝑛) [Dinitz and Krauthgamer, 

2011]



Undirected (𝟐𝒌 − 𝟏)-spanners: 

There are global constructions of spanners with 
𝑂(𝑛1+1/𝑘) edges
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Approximation Number of rounds

𝑂 𝑛1/𝑘 𝑘 [Elkin and Neiman, 2017]

In the CONGEST model



Spanner Approximation

• Can we give efficient approximations also 
in the CONGEST model?
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Spanner Approximation

• Can we give efficient approximations also 
in the CONGEST model?
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Approximating 𝑘-spanners in directed or 
weighted graphs is hard in the CONGEST model.



Spanner Approximation
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This gives a strict separation between: 

• The CONGEST and LOCAL models

• The undirected and directed variants

Approximating 𝑘-spanners in directed or 
weighted graphs is hard in the CONGEST model.



Hardness of Approximation

Directed 𝑘-spanner for 𝑘 ≥ 5 : 

• Randomized  algorithms - ෩Ω( 𝑛/𝛼) rounds for an 
𝛼-approximation. 

• Deterministic algorithms - ෩Ω(𝑛/ 𝛼)

Weighted 𝑘-spanner for 𝑘 ≥ 4:

• Directed graphs - ෩Ω(𝑛)

• Undirected graphs - ෩Ω(𝑛/𝑘)
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How to show the results?

• We show reductions from problems in 
communication complexity.
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How to show the results?

• Learning if two input strings of size 𝑁 are disjoint
requires exchanging Ω(𝑁) bits.
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How to show the results?

• The goal: create a graph 𝐺 that depends on the 
inputs of Alice and Bob, such that

𝐺 has a sparse 
spanner

the inputs satisfy 
some property

⟺
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Creating gaps

We show several approaches to create gaps:

• A construction where each input bit affects 
Ω 𝛼𝑛 edges of the spanner

• Using the gap-disjointness problem

• Using the weights
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Alice Bob

Dense
subgraph

Sparse 
Subgraph 

that depends 
on the inputs
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Alice Bob

In each 
side: 

ℓ blocks 
of size 𝛽

𝛽

In each side:
2 parts of size 

ℓ
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There are two inputs 𝑎, 𝑏 of ℓ2 bits 𝑎𝑖𝑗 , 𝑏𝑖𝑗 such that:

𝑥𝑖
1, 𝑥𝑗

2 is in 𝐺 ⇔ 𝑎𝑖𝑗 = 0
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2 is in 𝐺 ⇔ 𝑏𝑖𝑗 = 0
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There is a directed path of 

length 2 from 𝑥𝑖
1 to 𝑦𝑗

2

⇔
𝑎𝑖𝑗 = 0 or 𝑏𝑖𝑗 = 0
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There is a directed path of 
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length 2 from 𝑥𝑖
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There is a directed path of 

length 2 from 𝑥𝑖
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Conclusion

• ෩Ω( 𝑛/𝛼) rounds are required for constructing an 
𝛼-approximation for directed 5-spanner (holds 
also for 𝑘 ≥ 5).

Other results:

• For deterministic algorithms, we can improve the 
lower bound to ෩Ω(𝑛/ 𝛼) using gap-disjointness.

• For weighted graphs, we can improve the lower 
bound to ෩Ω(𝑛) for directed graphs, and ෩Ω(𝑛/𝑘)
for undirected graphs.
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Other variants

• We can use this construction to show hardness 
results for additional variants, such as the client-
server variant.

• The main open question is the undirected 
unweighted case.
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Algorithm in the LOCAL model

We can get 1 + 𝜖 -approximation in 
𝑂(𝑝𝑜𝑙𝑦(log 𝑛 /𝜖)) rounds in the LOCAL 
model. [inspired by Ghaffari, Kuhn, and Maus, 2017]
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A sequential algorithm

• 𝑣1, 𝑣2, … , 𝑣𝑛

• 𝐵𝑑 𝑣 = the ball of radius 𝑑 around 𝑣

• 𝑔 𝑣, 𝑑 = the size of an optimal 𝒌-spanner for the 
uncovered edges in 𝑩𝒅 𝒗
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A sequential algorithm

𝑔 𝑣, 𝑑 = the size of an optimal 𝒌-spanner for 𝑩𝒅 𝒗

In iteration 𝑖:

find 𝑟𝑖 such that 𝑔(𝑣𝑖 , 𝑟𝑖 + 2𝑘) ≤ 1 + 𝜖 𝑔(𝑣𝑖 , 𝑟𝑖)
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A sequential algorithm

𝑔 𝑣, 𝑑 = the size of an optimal 𝒌-spanner for 𝑩𝒅 𝒗

In iteration 𝑖:

find 𝑟𝑖 such that 𝑔(𝑣𝑖 , 𝑟𝑖 + 2𝑘) ≤ 1 + 𝜖 𝑔(𝑣𝑖 , 𝑟𝑖)

𝑟𝑖 = 𝑂(log 𝑛 /𝜖)
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A sequential algorithm

In iteration 𝑖:

find 𝑟𝑖 such that 𝑔(𝑣𝑖 , 𝑟𝑖 + 2𝑘) ≤ 1 + 𝜖 𝑔(𝑣𝑖 , 𝑟𝑖)

add an optimal spanner for 𝑩𝒓𝒊+𝟐𝒌 (𝒗)
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Approximation ratio analysis

• 𝐻∗ - an optimal spanner

• 𝐸𝑖 = the uncovered edges in 𝐵𝑟𝑖(𝑣𝑖) before iteration 𝑖

• 𝐻𝑖
∗ ⊆ 𝐻∗ = minimum 𝑘-spanner for 𝐸𝑖
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Approximation ratio analysis

• 𝐻∗ - an optimal spanner

• 𝐸𝑖 = the uncovered edges in 𝐵𝑟𝑖(𝑣𝑖) before iteration 𝑖

• 𝐻𝑖
∗ ⊆ 𝐻∗ = minimum 𝑘-spanner for 𝐸𝑖

𝐸𝑖 , 𝐸𝑗 are at distance at least 2𝑘 + 1

The subsets 𝐻𝑖
∗ are disjoint
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Approximation ratio analysis

The number of edges in our spanner is at most

෍

𝑖=1

𝑛

(1 + 𝜖) |𝐻𝑖
∗| ≤ (1 + 𝜖)|𝐻∗|
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Distributed algorithm

We use 𝑑, 𝑐 -network decomposition, with 𝑑 = 𝑐 = 𝑂(log 𝑛)
[Linial and Saks, 1993]
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Distributed algorithm

• We choose 𝑟 = 𝑂(log 𝑛 /𝜖) such that 𝑟 > 𝑟𝑖 + 4𝑘 for all 𝑖

• We compute a network decomposition of 𝑮𝒓

(𝑂(𝑝𝑜𝑙𝑦(log 𝑛 /𝜖)) rounds in the LOCAL model).
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Distributed algorithm

• The label of a vertex 𝑣 is (𝑐𝑜𝑙𝑣 , 𝑖𝑑𝑣) order of the vertices

• We simulate the sequential algorithm according to 
increasing order of the colors. 

• The computations depend only on the 𝒓-neighborhood of 
vertices in 𝐺.
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Conclusion

• We can get 1 + 𝜖 -approximation in 
𝑂(𝑝𝑜𝑙𝑦(log 𝑛 /𝜖)) rounds in the LOCAL model.

• This algorithm is based on learning 
neighborhoods of polylogarithmic size and 
solving NP-complete problems.
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2-spanners

• There  is an 𝑂(log 𝑛)-round 𝑂(log 𝑛)-
approximation in expectation using only 
polynomial local computations [Dinitz and 
Krauthgamer, 2011]

• Can we give an 𝑂 log
𝐸

𝑉
-approximation?

• Can we guarantee the approximation ratio?

• Can we give an algorithm in the CONGEST model?

• What about lower bounds?
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Stars and Densities

• A star around a vertex 
𝑣, is a subset 𝑺 of 
edges between 𝑣 to 
some of its neighbors.

• The density of a star 𝑆

is 
𝐶𝑆

|𝑆|
where 𝐶𝑆 is the 

number of edges 
covered by the star 𝑆.

𝑣
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Stars and Densities

• A star around a vertex 
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edges between 𝑣 to 
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is 
𝐶𝑆

|𝑆|
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number of edges 
covered by the star 𝑆.

𝑣
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Sequential Greedy Algorithm 
[Kortsarz and Peleg 1994]

• At each step, find the densest star in the graph, and 
add its edges to the spanner.

• Continue until all edges are covered.

• Achieves approximation ratio of 𝑂 log
𝐸

𝑉
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Distributed Algorithm – take 1

• At each step, find the densest star in the graph, 
and add its edges to the spanner.

• Continue until all edges are covered.
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Distributed Algorithm – take 2

• At each step, find all the stars that are densest in 
their local 2-neighborhood, and add their edges 
to the spanner.

• Continue until all edges are covered.
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Distributed Algorithm – take 3

• At each step, find all the stars that are densest in their local 
2-neighborhood, they are the candidates.

• Each candidate chooses a random number 𝑟 ∈ [0,1].

• Each uncovered edge votes to the first candidate that 
covers it.

• A star is added to the spanner if it gets at least 
𝟏

𝟖
of the 

votes of the edges it covers.
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Distributed Algorithm – take 3
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Distributed Algorithm – take 3

• At each step, find all the stars that are densest in their local 
2-neighborhood, they are the candidates.
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Distributed Algorithm – take 3

• At each step, find all the stars that are densest in their local 
2-neighborhood, they are the candidates.

• Each candidate chooses a random number 𝑟 ∈ [0,1].

• Each uncovered edge votes to the first candidate that 
covers it.

• A star is added to the spanner if it gets at least 
𝟏

𝟖
of the 

votes of the edges it covers.
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Approximation ratio

• For 𝑒 ∈ 𝐸, we define 𝑐𝑜𝑠𝑡 𝑒 =
1

𝜌
if 𝑒 is covered 

by a star it votes for and has density 𝜌, and 
𝑐𝑜𝑠𝑡 𝑒 = 0 otherwise.

• We show: 

𝐻 ≤ 8෍

𝑒∈𝐸

𝑐𝑜𝑠𝑡 𝑒 ≤ 𝑂 log
𝐸

𝑉
|𝐻∗|
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Conclusion

• We can show that this approach guarantees an 

approximation of 𝑂 log
𝐸

𝑉
in 𝑂(log 𝑛 log Δ)

rounds w.h.p.

• Extends also to the weighted, directed and client-
server variants.

• We can also show that Ω
log Δ

log log Δ
or Ω

log 𝑛

log log 𝑛

rounds are required for a logarithmic 
approximation for weighted 2-spanner. [reduction 
from Kuhn, Moscibroda, and Wattenhofer, 2016]
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Lower bound for weighted 2-spanner

• We show a reduction from vertex cover
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Open questions

Hardness of Approximation:

• Is it possible to show separations between the 
LOCAL and CONGEST models for other problems?

• Undirected unweighted 𝑘-spanner

2-spanner:

• Is it possible to show a CONGEST algorithm?
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