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Spanners

A k-spanner of a graph G is a subgraph of G
that preserves distances up to a multiplicative

factor of k.



Spanners

* There are many constructions which give a global
guarantee on the size of the spanner:

(2k — 1)-spanners with 0(n**1/%) edges
P g

* This is optimal in the worst case assuming Erdos's
girth conjecture.



Spanner Approximation

* What about approximating the minimum k-
spanner?

Number of edges < a - OPT

* There are graphs where any 2-spanner has Q(n?)
edges, this is also true for k-spanners in directed
graphs.



In the sequential setting:
. IE| L
* 2-spanner: 0 (logm)—approxmatlon [Kortsarz and
Peleg 1994]

* Directed k-spanner: O(y/n logn)-approximation
[Berman, Bhattacharyya, Makarychev, Raskhodnikova and

Yaroslavtsev 2013]

Hardness Results:
* 2-spanner: ((logn) [Kortsarz 2001]
» Directed k-spanner: Q(20°8"° ™) Elkin and Peleg 2007]

e Undirected k-spanner: Q(20°8"~*™/kY [ Dinitz, Kortsarz
and Raz 2016]
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The Distributed Models

N vertices exchange messages in synchronous rounds

The model | Message size
LOCAL unbounded
CONGEST |0(logn) bits




In the LOCAL model

2-spanners:

Approximation

Number of rounds

O(logn)

O(logn)

[ Dinitz and Krauthgamer,
2011]

Directed k-spanners:

Approximation | Number of rounds
0 (\/n logn) O (klogn) [Dinitz and Nazari, 2017]
0(n°) constant [Barenboim, Elkin and
Gavoille, 2016]
(1+¢€) O(poly(logn /€)) |Our Results




In the CONGEST model

Undirected (2k — 1)-spanners:

There are global constructions of spanners with
0 (n'*t1/k) edges

$

Approximation

Number of rounds

0(nl/*)

k

[Elkin and Neiman, 2017]




Spanner Approximation

* Can we give efficient approximations also
in the CONGEST model?



Spanner Approximation

* Can we give efficient approximations also
in the CONGEST model?

Approximating k-spanners in directed or
weighted graphs is hard in the CONGEST model.
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Spanner Approximation

Approximating k-spanners in directed or
weighted graphs is hard in the CONGEST model.

This gives a strict separation between:
e The CONGEST and LOCAL models
e The undirected and directed variants
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Hardness of Approximation

Directed k-spannerfork > 5 :

- Randomized algorithms - Q(,/n/a) rounds for an
a-approximation.

» Deterministic algorithms - Q(n/Va)

Weighted k-spanner for k > 4:
e Directed graphs - Q(n)
» Undirected graphs - Q(n/k)
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How to show the results?

* We show reductions from problems in
communication complexity.
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How to show the results?

* Learning if two input strings of size N are disjoint
requires exchanging ((N) bits.
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How to show the results?

* The goal: create a graph G that depends on the
inputs of Alice and Bob, such that

G has a sparse - the inputs satisfy
spanner some property
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Creating gaps

We show several approaches to create gaps:

* A construction where each input bit affects
Q(an) edges of the spanner

* Using the gap-disjointness problem
* Using the weights
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that depends
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Each block is
connected to
one vertex

outside the
block

Alice




Alice

Each block is
connected to
one vertex
outside the
block



Bob

Alice

Each block is
connected to
one vertex

outside the
block




There are two inputs a, b of £2 bits a;}, b;; such that:
(xil,sz) isinG © a;j = 0

(yil,yjz) isinG & bl-j =0
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There is a directed path of
length 2 from x; to y;
=
a;; =0orb;; =0
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There is a directed path of
length 2 from x; to y;
=
a;; =0orb;; =0




There is a directed path of
length 2 from x; to y;
=
a;; =0orb;; =0
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There is a directed path of
length 2 from x; to y;
=
a;; =0orb;; =0
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Conclusion:

a, b are disjoint
=

there is a path of length 2
from x to y? forall i,
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If a, b are not disjoint

$
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There are i,j where
there is no directed
path of length 2 from

x; to y7

We need to take at /
least B edges to the S
spanner
We choose f = v an
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Q(£%) lower bound
for set-disjointness

Approximation
algorithm for 5-
spanners in
O(T(n)) rounds

¥

A protocol for
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O(T(n)logn |CUT,-p)
bits




Alice

N\
Ao
\—r
a)
I
m

|CUT,
T(n)-logn- ¥






Conclusion

» O(y/n/a) rounds are required for constructing an

a-approximation for directed 5-spanner (holds
also for k = 5).

Other results:

* For deterministic algorithms, we can improve the
lower bound to Q(n/+/a) using gap-disjointness.

* For weighted graphs, we can improve the lower
bound to (U(n) for directed graphs, and ((n/k)
for undirected graphs.
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Other variants

 We can use this construction to show hardness
results for additional variants, such as the client-
server variant.

* The main open question is the undirected
unweighted case.
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Algorithm in the LOCAL model

We can get (1 + €)-approximation in
O(poly(logn /€)) rounds in the LOCAL
model. [inspired by Ghaffari, Kuhn, and Maus, 2017]
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A sequential algorithm

* Uy, Uy, ., Uy
* B;(v) = the ball of radius d around v

* g(v,d) = the size of an optimal k-spanner for the
uncovered edges in B ;(v)



A sequential algorithm

g(v,d) = the size of an optimal k-spanner for B ;(v)
In iteration i:
find r; suchthat g(v;,1; + 2k) < (1 + e)g(v;, 1y)




A sequential algorithm

g(v,d) = the size of an optimal k-spanner for B ;(v)
In iteration i:
find r; suchthat g(v;,1; + 2k) < (1 + e)g(v;, 1y)

r; = 0(logn /e)



A sequential algorithm

In iteration i:
find r; such that g(v;, 7, + 2k) < (1 + €)g(v;, 17)

add an optimal spanner for B,. ;2 (V)




Approximation ratio analysis

 H* - an optimal spanner
* E; =the uncovered edges in B, (v;) before iteration i

* Hi € H* = minimum k-spanner for E;



Approximation ratio analysis

 H* - an optimal spanner
* E; =the uncovered edges in B, (v;) before iteration i

* Hi € H* = minimum k-spanner for E;

E;, E; are at distance at least 2k + 1

$

The subsets H; are disjoint
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Approximation ratio analysis

The number of edges in our spanner is at most

n
> (L+e)H;| < (1+e)lH"
=1



Distributed algorithm

We use (d, c)-network decomposition, with d = ¢ = O(logn)
[Linial and Saks, 1993]

Shets
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Distributed algorithm

* We chooser = O(logn /e) suchthatr > r; + 4k forall i
* We compute a network decomposition of G"
(O (poly(logn /€)) rounds in the LOCAL model).

« Q0
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Distributed algorithm

* The label of avertex vis (col,, id,) =2 order of the vertices

* We simulate the sequential algorithm according to
increasing order of the colors.

* The computations depend only on the r-neighborhood of
vertices in G.

-
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Conclusion

* We can get (1 + €)-approximation in
O(poly(logn /€)) rounds in the LOCAL model.

* This algorithm is based on learning
neighborhoods of polylogarithmic size and
solving NP-complete problems.



2-spanners

* There is an O(logn)-round O (log n)-
approximation in expectation using only

polynomial local computations [Dinitz and
Krauthgamer, 2011]

|E|
14
* Can we guarantee the approximation ratio?

* Can we give an algorithm in the CONGEST model?

* Canwegivean 0 (log )-approximation?

 What about lower bounds?



Stars and Densities

e A star around a vertex
v, is a subset S of
edges between v to

v
some of its neighbors.

* The density of a star S
is % where (s is the

number of edges
covered by the star S.
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Stars and Densities

e A star around a vertex
v, is a subset S of
edges between v to

v
some of its neighbors.

* The density of a star S
is % where (s is the

number of edges
covered by the star S.



Sequential Greedy Algorithm

[Kortsarz and Peleg 1994]

* At each step, find the densest star in the graph, and
add its edges to the spanner.

* Continue until all edges are covered.

* Achieves approximation ratio of O (log %)
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Distributed Algorithm — take 1

* At each step, find the densest star in the graph,
and add its edges to the spanner.

* Continue until all edges are covered.

60



Distributed Algorithm — take 2

* At each step, find all the stars that are densest in
their local 2-neighborhood, and add their edges
to the spanner.

* Continue until all edges are covered.
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Distributed Algorithm — take 3

* At each step, find all the stars that are densest in their local
2-neighborhood, they are the candidates.

* Each candidate chooses a random number r € [0,1].

* Each uncovered edge votes to the first candidate that
covers it.

: . 1
* Astaris added to the spanner if it gets at least 3 of the
votes of the edges it covers.
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Distributed Algorithm — take 3
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Distributed Algorithm — take 3

* At each step, find all the stars that are densest in their local
2-neighborhood, they are the candidates.

* Each candidate chooses a random number r € [0,1].

* Each uncovered edge votes to the first candidate that
covers it.

: . 1
* Astaris added to the spanner if it gets at least 3 of the
votes of the edges it covers.
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Distributed Algorithm — take 3

* At each step, find all the stars that are densest in their local
2-neighborhood, they are the candidates.

* Each candidate chooses a random number r € [0,1].

* Each uncovered edge votes to the first candidate that
covers it.

: . 1
* Astaris added to the spanner if it gets at least 3 of the
votes of the edges it covers.
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Approximation ratio

. 1., .
* For e € E, we define cost(e) = p if e is covered

by a star it votes for and has density p, and
cost(e) = 0 otherwise.

e We show:

E
H| < 82 cost(e) < (log:VD |H"|

eeE
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Conclusion

* We can show that this approach guarantees an

lEl) in O(lognlogA)

approximation of O (logm

rounds w.h.p.

* Extends also to the weighted, directed and client-
server variants.

e We can also show thatQ( log 4 )orQ(\/ log n )

log log A loglogn
rounds are required for a logarithmic

approximation for weighted 2-spanner. [reduction
from Kuhn, Moscibroda, and Wattenhofer, 2016]
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Lower bound for weighted 2-spanner

 We show a reduction from vertex cover
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Open questions

Hardness of Approximation:

* |s it possible to show separations between the
LOCAL and CONGEST models for other problems?

* Undirected unweighted k-spanner

2-spanner:
* |s it possible to show a CONGEST algorithm?
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