Distributed Spanner Approximation

Michal Dory, Technion
Joint work with: Keren Censor-Hillel, Technion
Spanners

A \textit{k-spanner} of a graph G is a subgraph of G that preserves distances up to a multiplicative factor of k.
Spanners

• There are many constructions which give a global guarantee on the size of the spanner:

 \((2k - 1)\)-spanners with \(O(n^{1+1/k})\) edges

• This is optimal in the worst case assuming Erdős's girth conjecture.
Spanner Approximation

• What about approximating the minimum k-spanner?

 Number of edges $\leq \alpha \cdot OPT$

• There are graphs where any 2-spanner has $\Omega(n^2)$ edges, this is also true for k-spanners in directed graphs.
In the sequential setting:

- **2-spanner**: $O\left(\log\frac{|E|}{|V|}\right)$-approximation [Kortsarz and Peleg 1994]
- **Directed k-spanner**: $O\left(\sqrt{n} \log n\right)$-approximation [Berman, Bhattacharyya, Makarychev, Raskhodnikova and Yaroslavtsev 2013]

Hardness Results:

- **2-spanner**: $\Omega(\log n)$ [Kortsarz 2001]
- **Directed k-spanner**: $\Omega\left(2^{\left(\log^{1-\varepsilon} n\right)}\right)$ [Elkin and Peleg 2007]
- **Undirected k-spanner**: $\Omega\left(2^{\left(\log^{1-\varepsilon} n/k\right)}\right)$ [Dinitz, Kortsarz and Raz 2016]
The Distributed Models

n vertices exchange messages in \textit{synchronous} rounds

<table>
<thead>
<tr>
<th>The model</th>
<th>Message size</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCAL</td>
<td>unbounded</td>
</tr>
<tr>
<td>CONGEST</td>
<td>$\Theta(\log n)$ bits</td>
</tr>
</tbody>
</table>
In the LOCAL model

2-spanners:

<table>
<thead>
<tr>
<th>Approximation</th>
<th>Number of rounds</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>[Dinitz and Krauthgamer, 2011]</td>
</tr>
</tbody>
</table>

Directed k-spanners:

<table>
<thead>
<tr>
<th>Approximation</th>
<th>Number of rounds</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(\sqrt{n} \log n)$</td>
<td>$O(k \log n)$</td>
<td>[Dinitz and Nazari, 2017]</td>
</tr>
<tr>
<td>$O(n^\epsilon)$</td>
<td>constant</td>
<td>[Barenboim, Elkin and Gavoille, 2016]</td>
</tr>
<tr>
<td>$(1 + \epsilon)$</td>
<td>$O(poly(\log n / \epsilon))$</td>
<td>Our Results</td>
</tr>
</tbody>
</table>
In the CONGEST model

Undirected \((2k - 1)\)-spanners:

There are global constructions of spanners with \(O(n^{1+1/k})\) edges

<table>
<thead>
<tr>
<th>Approximation</th>
<th>Number of rounds</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(n^{1/k}))</td>
<td>(k)</td>
<td>[Elkin and Neiman, 2017]</td>
</tr>
</tbody>
</table>
Spanner Approximation

• Can we give efficient approximations also in the CONGEST model?
Spanner Approximation

• Can we give efficient approximations also in the CONGEST model?

Approximating k-spanners in directed or weighted graphs is hard in the CONGEST model.
Spanner Approximation

Approximating k-spanners in \textbf{directed} or \textbf{weighted} graphs is hard in the CONGEST model.

This gives a strict \textit{separation} between:

- The \textbf{CONGEST} and \textbf{LOCAL} models
- The undirected and directed variants
Hardness of Approximation

Directed k-spanner for $k \geq 5$:

- Randomized algorithms - $\tilde{\Omega}(\sqrt{n/\alpha})$ rounds for an α-approximation.
- Deterministic algorithms - $\tilde{\Omega}(n/\sqrt{\alpha})$

Weighted k-spanner for $k \geq 4$:

- Directed graphs - $\tilde{\Omega}(n)$
- Undirected graphs - $\tilde{\Omega}(n/k)$
How to show the results?

• We show reductions from problems in communication complexity.
How to show the results?

• Learning if two input strings of size N are disjoint requires exchanging $\Omega(N)$ bits.
How to show the results?

• **The goal:** create a graph G that depends on the inputs of Alice and Bob, such that

$$G \text{ has a sparse spanner} \iff \text{the inputs satisfy some property}$$
Creating gaps

We show several approaches to create gaps:

• A construction where each input bit affects $\Omega(\alpha n)$ edges of the spanner
• Using the gap-disjointness problem
• Using the weights
\text{Alice} \\
\begin{align*}
X_2 & \quad Y_2 \\
\begin{array}{c}
X_1 & \quad Y_1 \\
\begin{array}{c}
X_1 & \quad Y_1 \\
\begin{array}{c}
X_1 & \quad Y_1 \\
\end{array}
\end{array}
\end{array}
\end{align*}
\text{Bob}
Sparse Subgraph that depends on the inputs
In each side: \(\ell \) blocks of size \(\beta \)

\[
\begin{align*}
X_1 & \quad Y_1 \\
\vec{x}_1 & \quad \vec{y}_1 \\
\vec{x}_2 & \quad \vec{y}_2 \\
\vdots & \quad \vdots \\
\vec{x}_\ell & \quad \vec{y}_\ell \\
\end{align*}
\]

\[
\begin{align*}
X_2 & \quad Y_2 \\
\vec{x}_{11} & \quad \vec{y}_{11} \\
\vec{x}_{12} & \quad \vec{y}_{12} \\
\vdots & \quad \vdots \\
\vec{x}_{1\beta} & \quad \vec{y}_{1\beta} \\
\vec{x}_{\ell 1} & \quad \vec{y}_{\ell 1} \\
\vec{x}_{\ell 2} & \quad \vec{y}_{\ell 2} \\
\vdots & \quad \vdots \\
\vec{x}_{\ell \beta} & \quad \vec{y}_{\ell \beta} \\
\end{align*}
\]

\[
\begin{align*}
Y_3 & \\
\vec{y}_1 & \\
\vec{y}_2 & \\
\vdots & \\
\vec{y}_\ell & \\
\end{align*}
\]

In each side: 2 parts of size \(\ell \)
Each block is connected to one vertex outside the block.
Each block is connected to one vertex outside the block
Each block is connected to one vertex outside the block.
There are two inputs a, b of ℓ^2 bits a_{ij}, b_{ij} such that:

(x^1_i, x^2_j) is in $G \iff a_{ij} = 0$

(y^1_i, y^2_j) is in $G \iff b_{ij} = 0$
There is a directed path of length 2 from x_i^1 to y_j^2 \iff $a_{ij} = 0$ or $b_{ij} = 0$
There is a directed path of length 2 from x_i^1 to y_j^2 \[\iff\] $a_{ij} = 0$ or $b_{ij} = 0$
There is a directed path of length 2 from x_i^1 to y_j^2 \[\Leftrightarrow\]

$a_{ij} = 0$ or $b_{ij} = 0$
There is a directed path of length 2 from x_i^1 to y_j^2 ⇔ $a_{ij} = 0$ or $b_{ij} = 0$
Conclusion:

\[a, b \text{ are disjoint} \iff \] there is a path of length 2 from \(x_i^1 \) to \(y_j^2 \) for all \(i, j \)
G contains a sparse 5-spanner \iff a, b are disjoint
G contains a sparse 5-spanner \iff a, b are disjoint
\(G \) contains a sparse 5-spanner \(\iff \)
\(a, b \) are disjoint
G contains a sparse 5-spanner \iff a, b are disjoint
G contains a sparse 5-spanner \iff a, b are disjoint
\(G \) contains a sparse 5-spanner \(\iff \)
\(a, b \) are disjoint
If a, b are not disjoint

There are i, j where there is no directed path of length 2 from x_i^1 to y_j^2

We need to take at least β^2 edges to the spanner

We choose $\beta \approx \sqrt{an}$
If a, b are not disjoint

There are i, j where there is no directed path of length 2 from x_i^1 to y_j^2

We need to take at least β^2 edges to the spanner

We choose $\beta \approx \sqrt{an}$
If a, b are not disjoint

There are i, j where there is no directed path of length 2 from x_i^1 to y_j^2

We need to take at least β^2 edges to the spanner

We choose $\beta \approx \sqrt{an}$
\(G \) contains a sparse 5-spanner \(\iff \) \\
\(a, b \) are disjoint
\(\Omega(\ell^2) \) lower bound for set-disjointness

Approximation algorithm for 5-spanners in \(O(T(n)) \) rounds

A protocol for disjointness that takes \(O(T(n) \log n \, |CUT_{A-B}|) \) bits
$$|CUT_{A-B}| = \theta(\ell)$$

$$T(n) \cdot \log n \cdot \ell = \Omega(\ell^2)$$

$$T(n) = \Omega\left(\frac{\ell}{\log n}\right)$$
\[T(n) = \Omega \left(\frac{\ell}{\log n} \right) \]

\[\beta \approx \sqrt{\alpha n} \]

\[\ell = \theta \left(\frac{n}{\beta} \right) = \theta \left(\sqrt{\frac{n}{\alpha}} \right) \]
Conclusion

• $\tilde{\Omega}(\sqrt{n/\alpha})$ rounds are required for constructing an α-approximation for directed 5-spanner (holds also for $k \geq 5$).

Other results:

• For deterministic algorithms, we can improve the lower bound to $\tilde{\Omega}(n/\sqrt{\alpha})$ using gap-disjointness.

• For weighted graphs, we can improve the lower bound to $\tilde{\Omega}(n)$ for directed graphs, and $\tilde{\Omega}(n/k)$ for undirected graphs.
Other variants

• We can use this construction to show hardness results for additional variants, such as the client-server variant.

• The main open question is the undirected unweighted case.
Algorithm in the LOCAL model

We can get $(1 + \epsilon)$-approximation in $O(poly(\log n / \epsilon))$ rounds in the LOCAL model. [inspired by Ghaffari, Kuhn, and Maus, 2017]
A sequential algorithm

- \(v_1, v_2, \ldots, v_n \)
- \(B_d(v) = \) the ball of radius \(d \) around \(v \)
- \(g(v, d) = \) the size of an optimal \(k \)-spanner for the uncovered edges in \(B_d(v) \)
A sequential algorithm

\[g(v, d) = \text{the size of an optimal } k\text{-spanner for } B_d(v) \]

In iteration \(i \):

find \(r_i \) such that \(g(v_i, r_i + 2k) \leq (1 + \epsilon)g(v_i, r_i) \)
A sequential algorithm

\[g(v, d) = \text{the size of an optimal } k\text{-spanner for } B_d(v) \]

In iteration \(i \):

find \(r_i \) such that

\[g(v_i, r_i + 2k) \leq (1 + \epsilon)g(v_i, r_i) \]

\[r_i = O(\log n / \epsilon) \]
A sequential algorithm

In iteration i:

find r_i such that $g(v_i, r_i + 2k) \leq (1 + \epsilon)g(v_i, r_i)$

add an **optimal spanner** for $B_{r_i+2k}(v)$
Approximation ratio analysis

- H^* - an optimal spanner
- $E_i = \text{the uncovered edges in } B_{r_i}(v_i) \text{ before iteration } i$
- $H_i^* \subseteq H^* = \text{minimum } k\text{-spanner for } E_i$
Approximation ratio analysis

- H^* - an optimal spanner
- E_i = the uncovered edges in $B_{r_i}(v_i)$ before iteration i
- $H_i^* \subseteq H^*$ = minimum k-spanner for E_i

E_i, E_j are at distance at least $2k + 1$

The subsets H_i^* are disjoint
Approximation ratio analysis

The number of edges in our spanner is at most

\[\sum_{i=1}^{n} (1 + \epsilon) |H_i^*| \leq (1 + \epsilon)|H^*| \]
Distributed algorithm

We use \((d, c)\)-network decomposition, with \(d = c = O(\log n)\) [Linial and Saks, 1993]
Distributed algorithm

• We choose $r = O(\log n / \epsilon)$ such that $r > r_i + 4k$ for all i
• We compute a network decomposition of G^r ($O(poly(\log n / \epsilon))$ rounds in the LOCAL model).
Distributed algorithm

• The label of a vertex v is $(col_v, id_v) \rightarrow \text{order}$ of the vertices
• We simulate the sequential algorithm according to increasing order of the colors.
• The computations depend only on the r-neighborhood of vertices in G.
Conclusion

• We can get $(1 + \epsilon)$-approximation in $O(poly(\log n / \epsilon))$ rounds in the LOCAL model.

• This algorithm is based on learning neighborhoods of polylogarithmic size and solving NP-complete problems.
2-spanners

• There is an $O(\log n)$-round $O(\log n)$-approximation in expectation using only polynomial local computations [Dinitz and Krauthgamer, 2011]

• Can we give an $O\left(\log \frac{|E|}{|V|}\right)$-approximation?
• Can we guarantee the approximation ratio?
• Can we give an algorithm in the CONGEST model?
• What about lower bounds?
Stars and Densities

• A star around a vertex \(v \), is a subset \(S \) of edges between \(v \) to some of its neighbors.

• The density of a star \(S \) is \(\frac{C_S}{|S|} \) where \(C_S \) is the number of edges covered by the star \(S \).
Stars and Densities

• A **star** around a vertex v, is a subset S of edges between v to some of its neighbors.

• The **density** of a star S is $\frac{C_S}{|S|}$ where C_S is the number of edges covered by the star S.
Sequential Greedy Algorithm

[Kortsarz and Peleg 1994]

• At each step, find the **densest star** in the graph, and add its edges to the spanner.

• Continue until all edges are covered.

• Achieves approximation ratio of $O \left(\log \frac{|E|}{|V|} \right)$
Distributed Algorithm – take 1

• At each step, find the **densest star** in the graph, and add its edges to the spanner.
• Continue until all edges are covered.
Distributed Algorithm – take 2

- At each step, find all the stars that are densest in their local 2-neighborhood, and add their edges to the spanner.
- Continue until all edges are covered.
Distributed Algorithm – take 3

• At each step, find all the stars that are densest in their local 2-neighborhood, they are the candidates.
• Each candidate chooses a random number \(r \in [0,1] \).
• Each uncovered edge votes to the first candidate that covers it.
• A star is added to the spanner if it gets at least \(\frac{1}{8} \) of the votes of the edges it covers.
Distributed Algorithm – take 3

- At each step, find all the stars that are densest in their local 2-neighborhood, they are the candidates.
- Each candidate chooses a random number $r \in [0,1]$.
- Each uncovered edge votes to the first candidate that covers it.
- A star is added to the spanner if it gets at least $\frac{1}{8}$ of the votes of the edges it covers.
Distributed Algorithm – take 3

• At each step, find all the stars that are densest in their local 2-neighborhood, they are the candidates.
• Each candidate chooses a random number $r \in [0,1]$.
• Each uncovered edge votes to the first candidate that covers it.
• A star is added to the spanner if it gets at least $\frac{1}{8}$ of the votes of the edges it covers.
Distributed Algorithm – take 3

• At each step, find all the stars that are densest in their local 2-neighborhood, they are the candidates.

• Each candidate chooses a random number \(r \in [0,1] \).

• Each uncovered edge votes to the first candidate that covers it.

• A star is added to the spanner if it gets at least \(\frac{1}{8} \) of the votes of the edges it covers.
Distributed Algorithm – take 3

• At each step, find all the stars that are densest in their local 2-neighborhood, they are the candidates.
• Each candidate chooses a random number \(r \in [0,1] \).
• Each uncovered edge votes to the first candidate that covers it.

• A star is added to the spanner if it gets at least \(\frac{1}{8} \) of the votes of the edges it covers.
Approximation ratio

• For $e \in E$, we define $cost(e) = \frac{1}{\rho}$ if e is covered by a star it votes for and has density ρ, and $cost(e) = 0$ otherwise.

• We show:

$$|H| \leq 8 \sum_{e \in E} cost(e) \leq O\left(\log\frac{|E|}{|V|}\right)|H^*|$$
Conclusion

• We can show that this approach guarantees an approximation of $O\left(\log \frac{|E|}{|V|}\right)$ in $O(\log n \log \Delta)$ rounds w.h.p.

• Extends also to the weighted, directed and client-server variants.

• We can also show that $\Omega\left(\frac{\log \Delta}{\log \log \Delta}\right)$ or $\Omega\left(\sqrt{\frac{\log n}{\log \log n}}\right)$ rounds are required for a logarithmic approximation for weighted 2-spanner. [reduction from Kuhn, Moscibroda, and Wattenhofer, 2016]
Lower bound for weighted 2-spanner

• We show a reduction from vertex cover
Open questions

Hardness of Approximation:
• Is it possible to show separations between the LOCAL and CONGEST models for other problems?
• Undirected unweighted k-spanner

2-spanner:
• Is it possible to show a CONGEST algorithm?