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𝑘-edge-connectivity

A graph 𝐺 is 𝒌-edge-connected 

= resistant to any 𝑘 − 1 edge failures

The problem:

Find the minimum k-edge-connected spanning 
subgraph (𝒌-ECSS)
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𝑘-edge-connectivity

𝑘 = 1 Find a minimum spanning tree (MST)

A graph 𝐺 is 𝒌-edge-connected 
= resistant to any 𝑘 − 1 edge failures
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𝑘-edge-connectivity

𝑘 = 2 Find a minimum 2-ECSS

A graph 𝐺 is 𝒌-edge-connected 
= resistant to any 𝑘 − 1 edge failures
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•A central problem in network design.

•Well-studied in the sequential setting.

•The goal: solve in the distributed setting.

𝑘-ECSS
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The CONGEST model
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• 𝒏 vertices
• Θ(log 𝑛)-bit messages 
• synchronous rounds



Previous work

•The minimum spanning tree (MST) problem is well-
studied in the CONGEST model.

•Takes ෨𝑂(𝐷 + 𝑛) rounds (𝐷 = diameter) [Kutten and 
Peleg, 95] 
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Unweighted 𝑘-ECSS

rounds approximation

𝑘 ෨𝑂(𝑘(𝐷 + 𝑛)) 2 Thurimella, 95

𝑘 = 2 𝑂(𝐷) 2 Censor-Hillel 
and Dory, 17

11



Unweighted 𝑘-ECSS

𝑘 = 3 𝑂(𝐷log3𝑛) 𝑂(log 𝑛)

This work
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Weighted 𝑘-ECSS

rounds approximation

𝑘 𝑂(𝑘𝑛𝐷) 𝑂(log 𝑘) Nutov and 
Sadeh, 2009

𝑘 = 2 𝑂(𝑛) 3 Censor-Hillel and 
Dory, 17
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Our Results

rounds approximation

Weighted 2-ECSS ෨𝑂(𝐷 + 𝑛) 𝑂(log 𝑛)

Weighted 𝑘-ECSS ෨𝑂(𝑘𝑛) 𝑂(𝑘 log 𝑛)

Unweighted 3-ECSS 𝑂(𝐷log3𝑛) 𝑂(log 𝑛)
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General structure

•We augment the connectivity gradually

𝑘 = 0
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General structure

•We augment the connectivity gradually
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𝑘 = 2



General structure

•We augment the connectivity gradually
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𝑘 = 3



𝐴𝑢𝑔𝑘

The input: 

•𝑘-edge-connected graph 𝐺 = (V, E), 

• 𝑘 − 1 -ECSS 𝐻

The output:

Minimum weight set of edges 𝐴 ⊆ 𝐸, such that 

𝐻 ∪ 𝐴 is 𝒌-edge-connected.
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𝐴𝑢𝑔𝑘

𝐴𝑖 = 𝜶𝒊-approximation algorithm for 𝐴𝑢𝑔𝑖
for 1 ≤ 𝑖 ≤ 𝑘

σ𝜶𝒊 -approximation algorithm for 𝑘-ECSS
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•An edge 𝑒 covers a cut C in 𝐻, if (𝐻\C) ∪ 𝑒 is 
connected

Solving 𝐴𝑢𝑔𝑘
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•An edge 𝑒 covers a cut C in 𝐻, if (𝐻\C) ∪ 𝑒 is 
connected

•To solve 𝐴𝑢𝑔𝑘 our goal is to cover all cuts of size

(𝑘 − 1) in 𝐻

Solving 𝐴𝑢𝑔𝑘
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𝑒



•For an edge 𝑒, let 𝐶𝑒 be all the cuts of size (𝑘 − 1)
in 𝐻 covered by 𝑒

•The cost-effectiveness of 𝑒 is

𝜌 𝑒 =
|𝐶𝑒|

𝑤(𝑒)

Cost-effectiveness
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Sequential Greedy Algorithm

•At each step, add to the augmentation the edge 
with maximum cost-effectiveness.

•Continue until all the cuts of size (𝑘 − 1) are 
covered.

Gives an 𝑂 log 𝑛 -approximation
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Distributed Algorithm – take 1

•At each step, add to the augmentation the edge 
with maximum cost-effectiveness.

•Continue until all the cuts of size (𝑘 − 1) are 
covered.
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Distributed Algorithm – take 2

•At each step, add to the augmentation all the 
edges with maximum cost-effectiveness.

•Continue until all the cuts of size (𝑘 − 1) are 
covered.
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•We would like to add edges simultaneously. 

•How to break the symmetry?

•How to compute cost-effectiveness?

Distributed Algorithm
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•A cut = a tree edge

2-ECSS
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•A cut = a tree edge

2-ECSS
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•A cut = a tree edge

2-ECSS

𝑒
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•A cut = a tree edge

2-ECSS

𝑒
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The Algorithm

•At each step, find all the edges with maximum 
cost-effectiveness, they are the candidates.

• Each candidate edge chooses a random number 
𝑟 ∈ [0,1].

• Each uncovered tree edge votes to the first 
candidate that covers it.

•An edge is added to the augmentation if it gets at 

least 
𝟏

𝟖
of the votes of the tree edges it covers.

•We continue until all tree edges are covered.
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•Gives an 𝑂 log 𝑛 -approximation 

•The number of iterations is 𝑂 log2𝑛

•How to implement each iteration?
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•We need to do many global computations in 
parallel: computing cost-effectiveness, computing 
the number of votes…

•To achieve this, we decompose the tree into 
fragments, following a decomposition presented for 
solving the fault-tolerant MST problem [Ghaffari
and Parter, 2016].
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The Algorithm



Conclusion

•𝑂 𝐷 + 𝑛 log2𝑛 -round, 𝑂 log 𝑛 -approximation 

for 2-ECSS

𝑘 = 2
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What about minimum 𝑘-ECSS?

•Now the cost-effectiveness of an edge depends on 
the number of cuts it covers.

•How to compute cost-effectiveness?

•How to break the symmetry?
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3-ECSS

•To compute cost-effectiveness, we use the cycle 
space sampling technique [Pritchard and Thurimella, 

2011]

•We give the edges of the graph labels that allow to 
detect cuts of size 2 efficiently.
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3-ECSS

A 2-edge-connected subgraph H
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3-ECSS

𝑟1

𝑟2

𝑟3

Each non-tree edge chooses a random label
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3-ECSS

𝑟1 𝑟1

𝑟1

𝑟2

𝑟2

𝑟3
𝑟2⨁𝑟3

𝑟2⨁𝑟3

𝑟1⨁𝑟2

The label of a tree edge is the xor of non-tree edges that 
cover it
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3-ECSS

𝑟1 𝑟1

𝑟1

𝑟2

𝑟2

𝑟3
𝑟2⨁𝑟3

𝑟2⨁𝑟3

𝑟1⨁𝑟2

Two edges 
define a cut 

⇔
They have the 

same label
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3-ECSS

𝑟1 𝑟1

𝑟1

𝑟2

𝑟2

𝑟3
𝑟2⨁𝑟3

𝑟2⨁𝑟3

𝑟1⨁𝑟2
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3-ECSS

𝑟1 𝑟1

𝑟1

𝑟2

𝑟2

𝑟3
𝑟2⨁𝑟3

𝑟2⨁𝑟3

𝑟1⨁𝑟2

Two edges define a cut ⇔ they have the same label

52



Detecting cut pairs

𝑟1 𝑟1

𝑟1

𝑟2

𝑟2

𝑟3
𝑟2⨁𝑟3

𝑟2⨁𝑟3

𝑟1⨁𝑟2

Two edges define a 
cut in two cases:
• A tree edge and a 

unique non-tree 
edge that covers it

• Two tree edges 
covered by the 
exact same non-
tree edges
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Computing cost-effectiveness

𝑟1 𝑟1

𝑟1

𝑟2

𝑟2

𝑟3
𝑟2⨁𝑟3

𝑟2⨁𝑟3

𝑟1⨁𝑟2

𝑟4

Assume we add a new edge 𝑒 with the label 𝑟4
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Computing cost-effectiveness

𝑟1 𝑟1⨁𝑟4

𝑟1

𝑟2

𝑟2

𝑟3𝑟2⨁𝑟3⨁𝑟4

𝑟2⨁𝑟3

𝑟1⨁𝑟2

𝑟4

It changes the labels of tree edges it covers
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Computing cost-effectiveness

𝑟1 𝑟1⨁𝑟4

𝑟1

𝑟2

𝑟2

𝑟3𝑟2⨁𝑟3⨁𝑟4

𝑟2⨁𝑟3

𝑟1⨁𝑟2

𝑟4
𝑒 covers all the 
cut pairs 𝑓, 𝑓′

where exactly 
one of  𝑓, 𝑓′ is in 
the tree path
covered by 𝑒
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3-ECSS

•We compute cost-effectiveness in 𝑂(𝐷) rounds

•We show a mechanism for symmetry breaking that 
takes 𝑂 log3 𝑛 iterations

Conclusion:

𝑂(𝐷 log3 𝑛)-round 𝑂(log 𝑛)-approximation for 
unweighted 3-ECSS
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What about minimum 𝑘-ECSS?

•Now the cost-effectiveness of an edge depends on 
the number of cuts it covers.

•How to compute cost-effectiveness?

•How to break the symmetry?

62



Computing cost-effectiveness

•Minimum 𝑘-edge-connected subgraphs are 
sparse.

• In 𝑂 𝑘𝑛 rounds we can learn the whole 
subgraph 𝐻 and compute cost-effectiveness.
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Symmetry Breaking

•Candidates = edges with maximum cost-
effectiveness

•We would like to add small number of candidates 
that cover many cuts.
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Symmetry Breaking

deg 𝐶 = number of candidates that cover the cut 𝐶

Intuition: if each of the candidates that covers 𝐶 is 

added with probability 
1

deg(𝐶)
we add one candidate 

to cover 𝐶 in expectation

65



Symmetry Breaking

Idea: Candidates are added to the augmentation with 
probability 𝑝

• Initially 𝑝 =
1

𝑚

• Every 𝑂 log𝑛 iterations 𝑝 is increased by a factor of 2

Claim: when 𝑝 =
1

2𝑖
for all cuts 𝐶, deg(𝐶) ≤ 2𝑖 w.h.p

The number of iterations is 𝑂(log3𝑛).
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Summary

rounds approximation

Weighted 2-ECSS ෨𝑂(𝐷 + 𝑛) 𝑂(log 𝑛)

Weighted 𝑘-ECSS ෨𝑂(𝑘𝑛) 𝑂(𝑘 log 𝑛)

Unweighted 3-ECSS 𝑂(𝐷log3𝑛) 𝑂(log 𝑛)
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Open questions

Weighted 𝒌-ECSS

There is a sublinear algorithm for 𝒌 = 𝟐, what about 𝑘 > 2?

Unweighted 𝒌-ECSS

There is an 𝑂(𝐷log3𝑛)-round algorithm for 𝒌 = 𝟑, what 
about 𝑘 > 3?
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