Distributed Approximation of k-edge-connected Subgraphs

Michal Dory, Technion
k-edge-connectivity

A graph G is k-edge-connected
= resistant to any $k - 1$ edge failures

The problem:
Find the minimum k-edge-connected spanning subgraph (k-ECSS)
k-edge-connectivity

A graph G is **k-edge-connected**
= resistant to any $k - 1$ edge failures

$k = 1 \quad \rightarrow \quad$ Find a minimum spanning tree (MST)
k-edge-connectivity

A graph G is **k-edge-connected**
= resistant to any $k - 1$ edge failures

$k = 1$ → Find a minimum spanning tree (MST)
k-edge-connectivity

A graph G is k-edge-connected = resistant to any $k - 1$ edge failures

$k = 2$ \Rightarrow Find a minimum 2-ECSS
k-edge-connectivity

A graph G is k-edge-connected = resistant to any $k - 1$ edge failures

$k = 2 \quad \rightarrow \quad $ Find a minimum 2-ECSS
k-edge-connectivity

A graph G is k-edge-connected = resistant to any $k - 1$ edge failures

$k = 2$ \[\rightarrow\] Find a minimum 2-ECSS
\(k\)-ECSS

• A central problem in network design.
• Well-studied in the sequential setting.
• The goal: solve in the \textit{distributed} setting.
The **CONGEST** model

- n vertices
- $\Theta(\log n)$-bit messages
- **synchronous** rounds
Previous work

• The minimum spanning tree (MST) problem is well-studied in the CONGEST model.

• Takes $\tilde{O}(D + \sqrt{n})$ rounds ($D =$ diameter) [Kutten and Peleg, 95]
Unweighted k-ECSS

<table>
<thead>
<tr>
<th>k</th>
<th>$\tilde{O}(k(D + \sqrt{n}))$</th>
<th>2</th>
<th>Thurimella, 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 2$</td>
<td>$O(D)$</td>
<td>2</td>
<td>Censor-Hillel and Dory, 17</td>
</tr>
</tbody>
</table>
Unweighted k-ECSS

<table>
<thead>
<tr>
<th>k</th>
<th>Rounds</th>
<th>Approximation</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>$\tilde{O}(k(D + \sqrt{n}))$</td>
<td>2</td>
<td>Thurimella, 95</td>
</tr>
<tr>
<td>$k = 2$</td>
<td>$O(D)$</td>
<td>2</td>
<td>Censor-Hillel and Dory, 17</td>
</tr>
<tr>
<td>$k = 3$</td>
<td>$O(D\log^3 n)$</td>
<td>$O(\log n)$</td>
<td></td>
</tr>
</tbody>
</table>

This work
Weighted k-ECSS

<table>
<thead>
<tr>
<th></th>
<th>rounds</th>
<th>approximation</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>$O(knD)$</td>
<td>$O(\log k)$</td>
<td>Nutov and Sadeh, 2009</td>
</tr>
<tr>
<td>$k = 2$</td>
<td>$O(n)$</td>
<td>3</td>
<td>Censor-Hillel and Dory, 17</td>
</tr>
</tbody>
</table>
Weighted k-ECSS

<table>
<thead>
<tr>
<th></th>
<th>rounds</th>
<th>approximation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>$O(knD)$</td>
<td>$O(\log k)$</td>
<td>Nutov and Sadeh, 2009</td>
</tr>
<tr>
<td>$k = 2$</td>
<td>$O(n)$</td>
<td>3</td>
<td>Censor-Hillel and Dory, 17</td>
</tr>
</tbody>
</table>

This work

| $k = 2$ | $\tilde{O}(D + \sqrt{n})$ | $O(\log n)$ |
| k | $\tilde{O}(kn)$ | $O(k \log n)$ |
Our Results

<table>
<thead>
<tr>
<th></th>
<th>rounds</th>
<th>approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighted 2-ECSS</td>
<td>$\tilde{O}(D + \sqrt{n})$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Weighted k-ECSS</td>
<td>$\tilde{O}(kn)$</td>
<td>$O(k \log n)$</td>
</tr>
<tr>
<td>Unweighted 3-ECSS</td>
<td>$O(D \log^3 n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>
General structure

• We augment the connectivity gradually

\[k = 0 \]
General structure

• We augment the connectivity gradually

\[k = 1 \]
General structure

• We augment the connectivity gradually

$k = 2$
General structure

• We augment the connectivity gradually

$k = 3$
The input:
- k-edge-connected graph $G = (V, E)$,
- $(k - 1)$-ECSS H

The output:
Minimum weight set of edges $A \subseteq E$, such that $H \cup A$ is k-edge-connected.
Aug_k

\[A_i = \alpha_i \text{-approximation algorithm for Aug}_i \]

for \(1 \leq i \leq k\)

\[(\sum \alpha_i) \text{-approximation algorithm for k-ECSS} \]
Solving Aug_k

- An edge e **covers** a cut C in H, if $(H \setminus C) \cup \{e\}$ is connected.
Solving Aug_k

- An edge e **covers** a cut C in H, if $(H \setminus C) \cup \{e\}$ is connected
Solving Aug_k

• An edge e covers a cut C in H, if $(H \setminus C) \cup \{e\}$ is connected
Solving Aug_k

• An edge e **covers** a cut C in H, if $(H \setminus C) \cup \{e\}$ is connected

• To solve Aug_k our goal is to cover all cuts of size $(k - 1)$ in H
Cost-effectiveness

• For an edge e, let C_e be all the cuts of size $(k - 1)$ in H covered by e
• The cost-effectiveness of e is

$$\rho(e) = \frac{|C_e|}{w(e)}$$
Sequential Greedy Algorithm

- At each step, add to the augmentation the edge with maximum cost-effectiveness.
- Continue until all the cuts of size \((k - 1)\) are covered.

Gives an \(O(\log n)\)-approximation
Distributed Algorithm – take 1

• At each step, add to the augmentation the edge with maximum cost-effectiveness.
• Continue until all the cuts of size \((k - 1)\) are covered.
Distributed Algorithm – take 2

• At each step, add to the augmentation all the edges with maximum cost-effectiveness.
• Continue until all the cuts of size \((k - 1)\) are covered.
Distributed Algorithm

• We would like to add edges simultaneously.
• How to break the symmetry?
• How to compute cost-effectiveness?
2-ECSS

• A cut = a tree edge
The Algorithm

• At each step, find all the edges with maximum cost-effectiveness, they are the candidates.

• Each candidate edge chooses a random number \(r \in [0,1] \).

• Each uncovered tree edge votes to the first candidate that covers it.

• An edge is added to the augmentation if it gets at least \(\frac{1}{8} \) of the votes of the tree edges it covers.

• We continue until all tree edges are covered.
The Algorithm

- At each step, find all the edges with **maximum cost-effectiveness**, they are the **candidates**.

- Each candidate edge chooses a random number \(r \in [0,1] \).

- Each uncovered tree edge **votes** to the first candidate that covers it.

- An edge is added to the augmentation **if it gets at least** \(\frac{1}{8} \) **of the votes** of the tree edges it covers.

- We continue until all tree edges are covered.
The Algorithm

• At each step, find all the edges with maximum cost-effectiveness, they are the candidates.

• Each candidate edge chooses a random number \(r \in [0,1] \).

• Each uncovered tree edge votes to the first candidate that covers it.

• An edge is added to the augmentation if it gets at least \(\frac{1}{8} \) of the votes of the tree edges it covers.

• We continue until all tree edges are covered.
The Algorithm

• At each step, find all the edges with maximum cost-effectiveness, they are the candidates.

• Each candidate edge chooses a random number \(r \in [0,1] \).

• Each uncovered tree edge votes to the first candidate that covers it.

• An edge is added to the augmentation if it gets at least \(\frac{1}{8} \) of the votes of the tree edges it covers.

• We continue until all tree edges are covered.
The Algorithm

- At each step, find all the edges with **maximum cost-effectiveness**, they are the **candidates**.
- Each candidate edge chooses a random number $r \in [0,1]$.
- Each uncovered tree edge **votes** to the first candidate that covers it.
- An edge is added to the augmentation if it gets at least $\frac{1}{8}$ of the votes of the tree edges it covers.
- We continue until all tree edges are covered.
The Algorithm

• At each step, find all the edges with maximum cost-effectiveness, they are the candidates.

• Each candidate edge chooses a random number $r \in [0,1]$.

• Each uncovered tree edge votes to the first candidate that covers it.

• An edge is added to the augmentation if it gets at least $\frac{1}{8}$ of the votes of the tree edges it covers.

• We continue until all tree edges are covered.
The Algorithm

• Gives an $O(\log n)$-approximation
• The number of iterations is $O(\log^2 n)$
• How to implement each iteration?
The Algorithm

• At each step, find all the edges with maximum cost-effectiveness, they are the candidates.
• Each candidate edge chooses a random number \(r \in [0,1] \).
• Each uncovered tree edge votes to the first candidate that covers it.
• An edge is added to the augmentation if it gets at least \(\frac{1}{8} \) of the votes of the tree edges it covers.
• We continue until all tree edges are covered.
The Algorithm

• We need to do many **global computations** in parallel: computing cost-effectiveness, computing the number of votes...

• To achieve this, we **decompose the tree into fragments**, following a decomposition presented for solving the fault-tolerant MST problem [Ghaffari and Parter, 2016].
Conclusion

• $O \left((D + \sqrt{n}) \log^2 n \right)$-round, $O(\log n)$-approximation for 2-ECSS

$k = 2$
What about minimum k-ECSS?

• Now the cost-effectiveness of an edge depends on the number of cuts it covers.

• How to compute cost-effectiveness?
• How to break the symmetry?
3-ECSS

• To compute cost-effectiveness, we use the cycle space sampling technique \cite{Pritchard and Thurimella, 2011}

• We give the edges of the graph labels that allow to detect cuts of size 2 efficiently.
3-ECSS

A 2-edge-connected subgraph H
3-ECSS

Each *non-tree edge* chooses a random label
The label of a **tree edge** is the xor of non-tree edges that cover it.
3-ECSS

Two edges define a cut ⇔ They have the same label
Two edges define a cut \iff they have the same label
Two edges define a cut \iff they have the same label
Detecting cut pairs

Two edges define a cut in two cases:
• A tree edge and a unique non-tree edge that covers it
• Two tree edges covered by the exact same non-tree edges
Detecting cut pairs

Two edges define a cut in two cases:

• A tree edge and a unique non-tree edge that covers it

• Two tree edges covered by the exact same non-tree edges
Detecting cut pairs

Two edges define a cut in two cases:
• A tree edge and a unique non-tree edge that covers it
• Two tree edges covered by the exact same non-tree edges
Computing cost-effectiveness

Assume we add a new edge e with the label r_4
Computing cost-effectiveness

It changes the labels of tree edges it covers
e covers all the cut pairs $\{f, f'\}$ where exactly one of f, f' is in the tree path covered by e
Computing cost-effectiveness

Let e covers all the cut pairs $\{f, f'\}$ where exactly one of f, f' is in the tree path covered by e.
Computing cost-effectiveness

e covers all the cut pairs $\{f, f'\}$ where exactly one of f, f' is in the tree path covered by e
3-ECSS

• We compute **cost-effectiveness** in $O(D)$ rounds
• We show a mechanism for **symmetry breaking** that takes $O(\log^3 n)$ iterations

Conclusion:

$O(D \log^3 n)$-round $O(\log n)$-approximation for unweighted 3-ECSS
What about minimum k-ECSS?

• Now the cost-effectiveness of an edge depends on the number of cuts it covers.

• How to compute cost-effectiveness?
• How to break the symmetry?
Computing cost-effectiveness

- Minimum k-edge-connected subgraphs are sparse.
- In $O(kn)$ rounds we can learn the whole subgraph H and compute cost-effectiveness.
Symmetry Breaking

- *Candidates* = edges with maximum cost-effectiveness
- We would like to add small number of candidates that cover many cuts.
Symmetry Breaking

deg(C) = number of candidates that cover the cut C

Intuition: if each of the candidates that covers C is added with probability $\frac{1}{\text{deg}(C)}$ we add one candidate to cover C in expectation
Symmetry Breaking

Idea: Candidates are added to the augmentation with probability p

- Initially $p = \frac{1}{m}$
- Every $O(\log n)$ iterations p is increased by a factor of 2

Claim: when $p = \frac{1}{2^i}$ for all cuts C, $\deg(C) \leq 2^i$ w.h.p

The number of iterations is $O(\log^3 n)$.
Summary

<table>
<thead>
<tr>
<th></th>
<th>rounds</th>
<th>approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighted 2-ECSS</td>
<td>$\tilde{O}(D + \sqrt{n})$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Weighted k-ECSS</td>
<td>$\tilde{O}(kn)$</td>
<td>$O(k \log n)$</td>
</tr>
<tr>
<td>Unweighted 3-ECSS</td>
<td>$O(D \log^3 n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>
Open questions

Weighted k-ECSS

There is a sublinear algorithm for $k = 2$, what about $k > 2$?

Unweighted k-ECSS

There is an $O(D \log^3 n)$-round algorithm for $k = 3$, what about $k > 3$?