Distributed Approximation
of k-edge-connected
Subgraphs

Michal Dory, Technion

k-edge-connectivity

A graph G is k-edge-connected
= resistant to any k — 1 edge failures

The problem:

Find the minimum k-edge-connected spanning
subgraph (k-ECSS)

k-edge-connectivity

A graph G is k-edge-connected
= resistant to any k — 1 edge failures

k=1 - Find a minimum spanning tree (MST)

k-edge-connectivity

A graph G is k-edge-connected
= resistant to any k — 1 edge failures

k=1 - Find a minimum spanning tree (MST)

k-edge-connectivity

A graph G is k-edge-connected
= resistant to any k — 1 edge failures

k=2 » Find 2 minimum 2-ECSS

k-edge-connectivity

A graph G is k-edge-connected
= resistant to any k — 1 edge failures

k=2 - Find 2 minimum 2-ECSS

k-edge-connectivity

A graph G is k-edge-connected
= resistant to any k — 1 edge failures

k=2 » Find 2 minimum 2-ECSS

k-ECSS

* A central problem in network design.
* Well-studied in the sequential setting.
* The goal: solve in the distributed setting.

The CONGEST model

°* mnvertices
* O(ogn)-bit messages
* synchronous rounds

Previous work

* The minimum spanning tree (MST) problem is well-
studied in the CONGEST model.

* Takes O(D + +/n) rounds (D = diameter) [Kutten and
Peleg, 95]

10

Unweighted k-ECSS

rounds approximation
k | O(k(D ++n)) 2 Thurimella, 95
k =2 0(D) 2 Censor-Hillel

and Dory, 17

11

Unweighted k-ECSS

rounds approximation
k 5(k(D + /1)) 2 Thurimella, 95
k =2 0(D) 2 Censor-Hillel
and Dory, 17
This work
k=3| O0(Dlog3n) 0(logn)

12

Weighted k-ECSS

rounds approximation
k O(knD) O(log k) Nutov and
Sadeh, 2009
k =2 O(n) 3 Censor-Hillel and

Dory, 17

13

Weighted k-ECSS

rounds approximation
k O(knD) O(log k) Nutov and
Sadeh, 2009
k =2 O(n) 3 Censor-Hillel and
Dory, 17
This work
k=2|0(D++n)| O0(ogn)
k O(kn) | O(klogn)

14

Our Results

rounds approximation
Weighted 2-ECSS O(D ++n)| 0(ogn)
Weighted k-ECSS 0 (kn) O(klogn)
Unweighted 3-ECSS O(Dlog3n) | 0(logn)

15

General structure

* We augment the connectivity gradually

16

General structure

* We augment the connectivity gradually

17

General structure

* We augment the connectivity gradually

18

General structure

* We augment the connectivity gradually

19

Aug;,

The input:
* k-edge-connected graph ¢ = (V,E),
*(k —1)-ECSS H

The output:

Minimum weight set of edges A € E, such that
H U A is k-edge-connected.

20

Augy

A; = a;-approximation algorithm for Aug;
forl<i<k

\ 4

(2. a;)-approximation algorithm for k-ECSS

21

Solving Au gy

* An edge e covers a cut Cin H, if (H\C) U {e} is
connected

22

Solving Au gy

* An edge e covers a cut Cin H, if (H\C) U {e} is
connected

23

Solving Au gy

* An edge e covers a cut Cin H, if (H\C) U {e} is
connected

24

Solving Au gy

* An edge e covers a cut Cin H, if (H\C) U {e} is
connected

...*...

*To solve Aug,; our goal is to cover all cuts of size
(k—1)inH

25

Cost-effectiveness

*For an edge ¢, let C, be all the cuts of size (k — 1)
in H covered by e

* The cost-effectiveness of e is

|Ce |
w(e)

p(e) =

26

Sequential Greedy Algorithm

* At each step, add to the augmentation the edge
with maximum cost-effectiveness.

* Continue until all the cuts of size (k — 1) are
covered.

Gives an O(log n)-approximation

27

Distributed Algorithm — take 1

* At each step, add to the augmentation the edge
with maximum cost-effectiveness.

* Continue until all the cuts of size (k — 1) are
covered.

28

Distributed Algorithm — take 2

* At each step, add to the augmentation all the
edges with maximum cost-effectiveness.

* Continue until all the cuts of size (k — 1) are
covered.

29

Distributed Algorithm

* We would like to add edges simultaneously.
* How to break the symmetry?
* How to compute cost-effectiveness?

30

2-ECSS

* A cut = a tree edge

31

2-ECSS

* A cut = a tree edge

32

2-ECSS

* A cut = a tree edge

e

33

2-ECSS

* A cut = a tree edge

e

34

The Algorithm

* At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

e Each candidate edge chooses a random number
r € [0,1].

* Each uncovered tree edge votes to the first
candidate that covers it.

* An edge is added to the augmentation if it gets at
1 ,
least 3 of the votes of the tree edges it covers.

* We continue until all tree edges are covered.

35

The Algorithm

* At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

e Each candidate edge chooses a random number
r € [0,1].

* Each uncovered tree edge votes to the first
candidate that covers it.

* An edge is added to the augmentation if it gets at
1 ,
least 3 of the votes of the tree edges it covers.

* We continue until all tree edges are covered.

36

The Algorithm

* At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

e Each candidate edge chooses a random number
r € [0,1].

* Each uncovered tree edge votes to the first
candidate that covers it.

* An edge is added to the augmentation if it gets at
1 ,
least 3 of the votes of the tree edges it covers.

* We continue until all tree edges are covered.

37

The Algorithm

* At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

e Each candidate edge chooses a random number
r € [0,1].

* Each uncovered tree edge votes to the first
candidate that covers it.

* An edge is added to the augmentation if it gets at
1 ,
least 3 of the votes of the tree edges it covers.

* We continue until all tree edges are covered.

38

The Algorithm

* At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

e Each candidate edge chooses a random number
r € [0,1].

* Each uncovered tree edge votes to the first
candidate that covers it.

* An edge is added to the augmentation if it gets at
1 :
least s of the votes of the tree edges it covers.

* We continue until all tree edges are covered.

39

The Algorithm

* At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

e Each candidate edge chooses a random number
r € [0,1].

* Each uncovered tree edge votes to the first
candidate that covers it.

* An edge is added to the augmentation if it gets at
1 ,
least 3 of the votes of the tree edges it covers.

* We continue until all tree edges are covered.

40

The Algorithm

* Gives an O (log n)-approximation
* The number of iterations is 0 (log“n)
* How to implement each iteration?

41

The Algorithm

* At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

e Each candidate edge chooses a random number
r € [0,1].

* Each uncovered tree edge votes to the first
candidate that covers it.

* An edge is added to the augmentation if it gets at
1 ,
least 3 of the votes of the tree edges it covers.

* We continue until all tree edges are covered.

42

The Algorithm

* We need to do many global computations in
parallel: computing cost-effectiveness, computing
the number of votes...

* To achieve this, we decompose the tree into
fragments, following a decomposition presented for
solving the fault-tolerant MST problem [Ghaffari
and Parter, 2016].

43

Conclusion

0 ((D + \/ﬁ)logzn)—round, O (log n)-approximation
for 2-ECSS

44

What about minimum k-ECSS?

* Now the cost-effectiveness of an edge depends on
the number of cuts it covers.

X

* How to compute cost-effectiveness?
* How to break the symmetry?

45

3-ECSS

* To compute cost-effectiveness, we use the cycle
space sampling technique [Pritchard and Thurimella,
2011]

* We give the edges of the graph labels that allow to
detect cuts of size 2 efficiently.

46

3-ECSS

L
-
-
-
-
,/
7’

——————————

=

A 2-edge-connected subgraph H

47

Each non-tree edge chooses a random label

48

The label of a tree edge is the xor of non-tree edges that
cover it

49

3-ECSS

Two edges
define a cut
=
They have the
same label

50

o

-
=

Two edges define a cut © they have the same label

51

Two edges define a cut © they have the same label

52

Detecting cut pairs

Two edges define a

cut in two cases:

e Atree edge anda
unigue non-tree
edge that covers it

 Two tree edges
covered by the
exact same non-
tree edges

53

Detecting cut pairs

Two edges define a
cut in two cases: -

R
e Atree edgeanda T } m
unique non-tree ¥ Oy

edge that covers it :

* Two tree edges 1
covered by the
exact samenon- —~ A~
tree edges r

-
=

o

54

Detecting cut pairs

Two edges define a

cut in two cases:

 Atree edgeanda
unigue non-tree
edge that covers it

* Two tree edges
covered by the
exact same non-
tree edges

-
-~
-

o

-
---—-—_—’

55

Computing cost-effectiveness

———_-_5

L
-
-
-
-
”

N

o

-
.-_-———————’

Assume we add a new edge e with the label 7,

56

Computing cost-effectiveness

__——-—5

L
-
-
-

o

-
=

It changes the labels of tree edges it covers

57

Computing cost-effectiveness

——--N

-
-
-
-
-
P d

e covers all the &
. T- Vol T T,
cut pairs {f, '} Ly 1774
1
where exactly ."
] - . 1
oneof f,f isin '.‘
\
\
\
\
\

~

o

the tree path
covered by e

-
=

58

Computing cost-effectiveness

e covers all the »”

cutpairs {(f, /3,7 :
where exactly

!
|
one of f,f"isin I‘
1
|

o

the tree path
covered by e

-
=

59

Computing cost-effectiveness

——--N

-
-
-
-
-
P d

e covers all the &
. T- Vol T T,
cut pairs {f, '} Ly 1774
1
where exactly ."
] - . 1
oneof f,f isin '.‘
\
\
\
\
\

~

o

the tree path
covered by e

-
=

60

3-ECSS

* We compute cost-effectiveness in O(D) rounds

* We show a mechanism for symmetry breaking that
takes O (log> n) iterations

Conclusion:

0 (D log3 n)-round 0 (log n)-approximation for
unweighted 3-ECSS

61

What about minimum k-ECSS?

* Now the cost-effectiveness of an edge depends on
the number of cuts it covers.

X

* How to compute cost-effectiveness?
* How to break the symmetry?

62

Computing cost-effectiveness

* Minimum k-edge-connected subgraphs are
sparse.

*In O(kn) rounds we can learn the whole
subgraph H and compute cost-effectiveness.

63

Symmetry Breaking

* Candidates = edges with maximum cost-
effectiveness

 We would like to add small number of candidates
that cover many cuts.

64

Symmetry Breaking
deg(C) = number of candidates that cover the cut C

Intuition: if each of the candidates that covers C is

added with probability degl(c) we add one candidate

to cover C in expectation

65

Symmetry Breaking

Idea: Candidates are added to the augmentation with
probability p

1
m
* Every O(logn) iterations p is increased by a factor of 2

* Initially p =

Claim: when p = %for all cuts C, deg(C) < 2 w.h.p

The number of iterations is 0 (log3n).

66

Summary

rounds approximation
Weighted 2-ECSS O(D ++n)| 0(ogn)
Weighted k-ECSS 0 (kn) O(klogn)
Unweighted 3-ECSS O(Dlog3n) | 0(logn)

67

Open guestions

Weighted k-ECSS
There is a sublinear algorithm for k = 2, what about k > 27

Unweighted k-ECSS

There is an O(Dlog3n)-round algorithm for k = 3, what
about k > 37

68

