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k-edge-connectivity

A graph G is k-edge-connected
= resistant to any k — 1 edge failures

The problem:

Find the minimum k-edge-connected spanning
subgraph (k-ECSS)
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k-ECSS

* A central problem in network design.
* Well-studied in the sequential setting.
* The goal: solve in the distributed setting.




The CONGEST model

°* mnvertices
* O(ogn)-bit messages
* synchronous rounds



Previous work

* The minimum spanning tree (MST) problem is well-
studied in the CONGEST model.

* Takes O(D + +/n) rounds (D = diameter) [Kutten and
Peleg, 95]
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Unweighted k-ECSS

rounds approximation
k | O(k(D ++n)) 2 Thurimella, 95
k =2 0(D) 2 Censor-Hillel

and Dory, 17
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Unweighted k-ECSS

rounds approximation
k 5(k(D + /1)) 2 Thurimella, 95
k =2 0(D) 2 Censor-Hillel
and Dory, 17
This work
k=3| O0(Dlog3n) 0(logn)
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Weighted k-ECSS

rounds approximation
k O(knD) O(log k) Nutov and
Sadeh, 2009
k =2 O(n) 3 Censor-Hillel and

Dory, 17
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Weighted k-ECSS

rounds approximation
k O(knD) O(log k) Nutov and
Sadeh, 2009
k =2 O(n) 3 Censor-Hillel and
Dory, 17
This work
k=2|0(D++n)| O0(ogn)
k O(kn) | O(klogn)
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Our Results

rounds approximation
Weighted 2-ECSS O(D ++n)| 0(ogn)
Weighted k-ECSS 0 (kn) O(klogn)
Unweighted 3-ECSS O(Dlog3n) | 0(logn)
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General structure

* We augment the connectivity gradually
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Aug;,

The input:
* k-edge-connected graph ¢ = (V,E),
*(k —1)-ECSS H

The output:

Minimum weight set of edges A € E, such that
H U A is k-edge-connected.
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Augy

A; = a;-approximation algorithm for Aug;
forl<i<k

\ 4

(2. a;)-approximation algorithm for k-ECSS
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Solving Au gy

* An edge e covers a cut Cin H, if (H\C) U {e} is
connected
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Solving Au gy

* An edge e covers a cut Cin H, if (H\C) U {e} is
connected

...*...

*To solve Aug,; our goal is to cover all cuts of size
(k—1)inH
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Cost-effectiveness

*For an edge ¢, let C, be all the cuts of size (k — 1)
in H covered by e

* The cost-effectiveness of e is

|Ce |
w(e)

p(e) =
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Sequential Greedy Algorithm

* At each step, add to the augmentation the edge
with maximum cost-effectiveness.

* Continue until all the cuts of size (k — 1) are
covered.

Gives an O(log n)-approximation
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Distributed Algorithm — take 1

* At each step, add to the augmentation the edge
with maximum cost-effectiveness.

* Continue until all the cuts of size (k — 1) are
covered.

28



Distributed Algorithm — take 2

* At each step, add to the augmentation all the
edges with maximum cost-effectiveness.

* Continue until all the cuts of size (k — 1) are
covered.
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Distributed Algorithm

* We would like to add edges simultaneously.
* How to break the symmetry?
* How to compute cost-effectiveness?
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2-ECSS

* A cut = a tree edge
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The Algorithm

* At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

e Each candidate edge chooses a random number
r € [0,1].

* Each uncovered tree edge votes to the first
candidate that covers it.

* An edge is added to the augmentation if it gets at
1 ,
least 3 of the votes of the tree edges it covers.

* We continue until all tree edges are covered.
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The Algorithm

* At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.
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The Algorithm

* Gives an O (log n)-approximation
* The number of iterations is 0 (log“n)
* How to implement each iteration?
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The Algorithm

* At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

e Each candidate edge chooses a random number
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The Algorithm

* We need to do many global computations in
parallel: computing cost-effectiveness, computing
the number of votes...

* To achieve this, we decompose the tree into
fragments, following a decomposition presented for
solving the fault-tolerant MST problem [Ghaffari
and Parter, 2016].
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Conclusion

0 ((D + \/ﬁ)logzn)—round, O (log n)-approximation
for 2-ECSS
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What about minimum k-ECSS?

* Now the cost-effectiveness of an edge depends on
the number of cuts it covers.

X

* How to compute cost-effectiveness?
* How to break the symmetry?
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3-ECSS

* To compute cost-effectiveness, we use the cycle
space sampling technique [Pritchard and Thurimella,
2011]

* We give the edges of the graph labels that allow to
detect cuts of size 2 efficiently.
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3-ECSS
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A 2-edge-connected subgraph H
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Each non-tree edge chooses a random label
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The label of a tree edge is the xor of non-tree edges that
cover it
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3-ECSS

Two edges
define a cut
=
They have the
same label
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Two edges define a cut © they have the same label
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Two edges define a cut © they have the same label
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Detecting cut pairs

Two edges define a

cut in two cases:

e Atree edge anda
unigue non-tree
edge that covers it

 Two tree edges
covered by the
exact same non-
tree edges
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Detecting cut pairs
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Computing cost-effectiveness
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Assume we add a new edge e with the label 7,
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Computing cost-effectiveness
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It changes the labels of tree edges it covers
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Computing cost-effectiveness
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Computing cost-effectiveness
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Computing cost-effectiveness
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3-ECSS

* We compute cost-effectiveness in O(D) rounds

* We show a mechanism for symmetry breaking that
takes O (log> n) iterations

Conclusion:

0 (D log3 n)-round 0 (log n)-approximation for
unweighted 3-ECSS
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What about minimum k-ECSS?

* Now the cost-effectiveness of an edge depends on
the number of cuts it covers.

X

* How to compute cost-effectiveness?
* How to break the symmetry?
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Computing cost-effectiveness

* Minimum k-edge-connected subgraphs are
sparse.

*In O(kn) rounds we can learn the whole
subgraph H and compute cost-effectiveness.

63



Symmetry Breaking

* Candidates = edges with maximum cost-
effectiveness

 We would like to add small number of candidates
that cover many cuts.
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Symmetry Breaking
deg(C) = number of candidates that cover the cut C

Intuition: if each of the candidates that covers C is

added with probability degl(c) we add one candidate

to cover C in expectation
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Symmetry Breaking

Idea: Candidates are added to the augmentation with
probability p

1
m
* Every O(logn) iterations p is increased by a factor of 2

* Initially p =

Claim: when p = %for all cuts C, deg(C) < 2 w.h.p

The number of iterations is 0 (log3n).
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Summary

rounds approximation
Weighted 2-ECSS O(D ++n)| 0(ogn)
Weighted k-ECSS 0 (kn) O(klogn)
Unweighted 3-ECSS O(Dlog3n) | 0(logn)
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Open guestions

Weighted k-ECSS
There is a sublinear algorithm for k = 2, what about k > 27

Unweighted k-ECSS

There is an O(Dlog3n)-round algorithm for k = 3, what
about k > 37
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