Distributed Approximation of *k*-edge-connected Subgraphs

Michal Dory, Technion

A graph G is k-edge-connected = resistant to any k - 1 edge failures

The problem:

Find the **minimum** k-edge-connected spanning subgraph (*k*-ECSS)

A graph G is **k**-edge-connected = resistant to any k - 1 edge failures

k = 1 Find a minimum spanning tree (MST)

A graph G is **k**-edge-connected = resistant to any k - 1 edge failures

k = 1 Find a minimum spanning tree (MST)

A graph G is k-edge-connected = resistant to any k - 1 edge failures

k = 2 Find a minimum 2-ECSS

A graph G is k-edge-connected = resistant to any k - 1 edge failures

k = 2 Find a minimum 2-ECSS

A graph G is k-edge-connected = resistant to any k - 1 edge failures

k = 2 Find a minimum 2-ECSS

- A central problem in network design.
- Well-studied in the sequential setting.
- <u>The goal</u>: solve in the **distributed** setting.

The **CONGEST** model

- *n* vertices
- $\Theta(\log n)$ -bit messages
- synchronous rounds

Previous work

- The minimum spanning tree (MST) problem is wellstudied in the CONGEST model.
- Takes $\tilde{O}(D + \sqrt{n})$ rounds (D = diameter) [Kutten and Peleg, 95]

Unweighted *k*-ECSS

	rounds	approximation	
k	$\tilde{O}(k(D+\sqrt{n}))$	2	Thurimella, 95
k = 2	0(D)	2	Censor-Hillel and Dory, 17

Unweighted *k*-ECSS

	rounds	approximation	
k	$\tilde{O}(k(D+\sqrt{n}))$	2	Thurimella, 95
k = 2	0(D)	2	Censor-Hillel and Dory, 17

This work

$k = 3 \qquad O(D\log^3 n)$	$O(\log n)$	
-----------------------------	-------------	--

Weighted *k*-ECSS

	rounds	approximation	
k	O(knD)	$O(\log k)$	Nutov and Sadeh, 2009
k = 2	0(n)	3	Censor-Hillel and Dory, 17

Weighted *k*-ECSS

	rounds	approximation	
k	O(knD)	$O(\log k)$	Nutov and Sadeh, 2009
k = 2	0(n)	3	Censor-Hillel and Dory, 17

This work

k = 2	$\tilde{O}(D+\sqrt{n})$	$O(\log n)$	
k	$ ilde{O}(kn)$	$O(k \log n)$	

Our Results

	rounds	approximation
Weighted 2-ECSS	$\tilde{O}(D+\sqrt{n})$	$O(\log n)$
Weighted <i>k</i> -ECSS	$\tilde{O}(kn)$	$O(k \log n)$
Unweighted 3-ECSS	$O(D\log^3 n)$	$O(\log n)$

• We augment the connectivity gradually

k = 0

• We augment the connectivity gradually

• We augment the connectivity gradually

$$k = 2$$

• We augment the connectivity gradually

k = 3

$$Aug_k$$

The input:

- k-edge-connected graph G = (V, E),
- (k-1)-ECSS H

The output:

Minimum weight set of edges $A \subseteq E$, such that $H \cup A$ is *k***-edge-connected**.

$$Aug_k$$

$A_i = \alpha_i \text{-approximation algorithm for } Aug_i$
for $1 \le i \le k$

 $(\sum \alpha_i)$ -approximation algorithm for k-ECSS

• An edge e covers a cut C in H, if $(H \setminus C) \cup \{e\}$ is connected

• An edge e covers a cut C in H, if $(H \setminus C) \cup \{e\}$ is connected

• An edge e covers a cut C in H, if $(H \setminus C) \cup \{e\}$ is connected

• An edge e covers a cut C in H, if $(H \setminus C) \cup \{e\}$ is connected

• To solve Aug_k our goal is to cover all cuts of size (k-1) in H

Cost-effectiveness

- For an edge e, let C_e be all the cuts of size (k 1) in H covered by e
- The **cost-effectiveness** of *e* is

$$\rho(e) = \frac{|C_e|}{w(e)}$$

Sequential Greedy Algorithm

- At each step, add to the augmentation the edge with **maximum cost-effectiveness**.
- Continue until all the cuts of size (k 1) are covered.

Gives an $O(\log n)$ -approximation

Distributed Algorithm – take 1

- At each step, add to the augmentation the edge with **maximum cost-effectiveness**.
- Continue until all the cuts of size (k 1) are covered.

Distributed Algorithm – take 2

- At each step, add to the augmentation **all** the edges with **maximum cost-effectiveness**.
- Continue until all the cuts of size (k 1) are covered.

Distributed Algorithm

- We would like to add edges simultaneously.
- How to break the symmetry?
- How to compute **cost-effectiveness**?

- At each step, find all the edges with **maximum cost-effectiveness**, they are the **candidates**.
- Each candidate edge chooses a random number $r \in [0,1]$.
- Each uncovered tree edge **votes** to the first candidate that covers it.
- An edge is added to the augmentation if it gets at least $\frac{1}{8}$ of the votes of the tree edges it covers.
- We continue until all tree edges are covered.

- At each step, find all the edges with **maximum cost-effectiveness**, they are the **candidates**.
- Each candidate edge chooses a random number r ∈ [0,1].
- Each uncovered tree edge **votes** to the first candidate that covers it.
- An edge is added to the augmentation if it gets at least $\frac{1}{8}$ of the votes of the tree edges it covers.
- We continue until all tree edges are covered.

- At each step, find all the edges with **maximum cost-effectiveness**, they are the **candidates**.
- Each candidate edge chooses a random number r ∈ [0,1].
- Each uncovered tree edge **votes** to the first candidate that covers it.
- An edge is added to the augmentation if it gets at least $\frac{1}{8}$ of the votes of the tree edges it covers.
- We continue until all tree edges are covered.

- At each step, find all the edges with **maximum cost-effectiveness**, they are the **candidates**.
- Each candidate edge chooses a random number r ∈ [0,1].
- Each uncovered tree edge **votes** to the first candidate that covers it.
- An edge is added to the augmentation if it gets at least $\frac{1}{8}$ of the votes of the tree edges it covers.
- We continue until all tree edges are covered.

- At each step, find all the edges with **maximum cost-effectiveness**, they are the **candidates**.
- Each candidate edge chooses a random number $r \in [0,1]$.
- Each uncovered tree edge **votes** to the first candidate that covers it.
- An edge is added to the augmentation if it gets at least $\frac{1}{8}$ of the votes of the tree edges it covers.
- We continue until all tree edges are covered.

- At each step, find all the edges with **maximum cost-effectiveness**, they are the **candidates**.
- Each candidate edge chooses a random number $r \in [0,1]$.
- Each uncovered tree edge **votes** to the first candidate that covers it.
- An edge is added to the augmentation if it gets at least $\frac{1}{8}$ of the votes of the tree edges it covers.
- We continue until all tree edges are covered.

- Gives an $O(\log n)$ -approximation
- The number of iterations is $O(\log^2 n)$
- How to implement each iteration?

- At each step, find all the edges with **maximum cost-effectiveness**, they are the **candidates**.
- Each candidate edge chooses a random number $r \in [0,1]$.
- Each uncovered tree edge **votes** to the first candidate that covers it.
- An edge is added to the augmentation if it gets at least $\frac{1}{8}$ of the votes of the tree edges it covers.
- We continue until all tree edges are covered.

- We need to do many **global computations** in parallel: computing cost-effectiveness, computing the number of votes...
- To achieve this, we **decompose the tree into fragments**, following a decomposition presented for solving the fault-tolerant MST problem [Ghaffari and Parter, 2016].

Conclusion

• $O\left((D + \sqrt{n})\log^2 n\right)$ -round, $O(\log n)$ -approximation for 2-ECSS

k = 2

What about minimum *k*-ECSS?

• Now the cost-effectiveness of an edge depends on the number of cuts it covers.

- How to compute cost-effectiveness?
- How to break the symmetry?

- To compute cost-effectiveness, we use the cycle space sampling technique [Pritchard and Thurimella, 2011]
- We give the edges of the graph labels that allow to detect cuts of size 2 efficiently.

A 2-edge-connected subgraph H

Each non-tree edge chooses a random label

The label of a **tree edge** is the xor of non-tree edges that cover it

Two edges define a cut ⇔ They have the same label

Two edges define a cut \Leftrightarrow they have the same label

Two edges define a cut \Leftrightarrow they have the same label

Detecting cut pairs

Two edges define a cut in <u>two cases:</u>

- A tree edge and a unique non-tree edge that covers it
- Two tree edges covered by the exact same nontree edges

Detecting cut pairs

Two edges define a cut in <u>two cases:</u>

- A tree edge and a unique non-tree edge that covers it
- Two tree edges covered by the exact same nontree edges

Detecting cut pairs

Two edges define a cut in <u>two cases:</u>

- A tree edge and a unique non-tree edge that covers it
- Two tree edges covered by the exact same nontree edges

Assume we add a new edge e with the label r_4

It changes the labels of tree edges it covers

e covers all the cut pairs {f, f'} where exactly one of f, f' is in the tree path covered by e

e covers all the cut pairs {f, f'} where exactly one of f, f' is in the tree path covered by e

e covers all the cut pairs {f, f'} where exactly one of f, f' is in the tree path covered by e

- We compute **cost-effectiveness** in O(D) rounds
- We show a mechanism for symmetry breaking that takes $O(\log^3 n)$ iterations

Conclusion:

 $O(D \log^3 n)$ -round $O(\log n)$ -approximation for unweighted 3-ECSS

What about minimum *k*-ECSS?

• Now the cost-effectiveness of an edge depends on the number of cuts it covers.

- How to compute cost-effectiveness?
- How to break the symmetry?

- Minimum *k*-edge-connected subgraphs are *sparse*.
- In O(kn) rounds we can learn the whole subgraph H and compute cost-effectiveness.

Symmetry Breaking

- Candidates = edges with maximum costeffectiveness
- We would like to add small number of candidates that cover many cuts.

Symmetry Breaking

deg(C) = number of candidates that cover the cut C

<u>Intuition</u>: if each of the candidates that covers *C* is added with probability $\frac{1}{\deg(C)}$ we add one candidate to cover *C* in expectation

Symmetry Breaking

Idea: Candidates are added to the augmentation with probability \boldsymbol{p}

- Initially $p = \frac{1}{m}$
- Every $O(\log n)$ iterations p is increased by a factor of 2

Claim: when
$$p = \frac{1}{2^i}$$
 for all cuts C , deg $(C) \le 2^i$ w.h.p

The number of iterations is $O(\log^3 n)$.

Summary

	rounds	approximation
Weighted 2-ECSS	$\tilde{O}(D+\sqrt{n})$	$O(\log n)$
Weighted k-ECSS	$\tilde{O}(kn)$	$O(k \log n)$
Unweighted 3-ECSS	$O(D\log^3 n)$	$O(\log n)$

Open questions

Weighted k-ECSS

There is a sublinear algorithm for k = 2, what about k > 2?

Unweighted *k*-ECSS

There is an $O(D\log^3 n)$ -round algorithm for k = 3, what about k > 3?