
Distributed Approximation
of 𝑘-edge-connected

Subgraphs

Michal Dory, Technion

𝑘-edge-connectivity

A graph 𝐺 is 𝒌-edge-connected

= resistant to any 𝑘 − 1 edge failures

The problem:

Find the minimum k-edge-connected spanning
subgraph (𝒌-ECSS)

2

𝑘-edge-connectivity

𝑘 = 1 Find a minimum spanning tree (MST)

A graph 𝐺 is 𝒌-edge-connected
= resistant to any 𝑘 − 1 edge failures

3

𝑘-edge-connectivity

𝑘 = 1 Find a minimum spanning tree (MST)

A graph 𝐺 is 𝒌-edge-connected
= resistant to any 𝑘 − 1 edge failures

4

𝑘-edge-connectivity

𝑘 = 2 Find a minimum 2-ECSS

A graph 𝐺 is 𝒌-edge-connected
= resistant to any 𝑘 − 1 edge failures

5

𝑘-edge-connectivity

𝑘 = 2 Find a minimum 2-ECSS

A graph 𝐺 is 𝒌-edge-connected
= resistant to any 𝑘 − 1 edge failures

6

𝑘-edge-connectivity

𝑘 = 2 Find a minimum 2-ECSS

A graph 𝐺 is 𝒌-edge-connected
= resistant to any 𝑘 − 1 edge failures

7

•A central problem in network design.

•Well-studied in the sequential setting.

•The goal: solve in the distributed setting.

𝑘-ECSS

8

The CONGEST model

9

• 𝒏 vertices
• Θ(log 𝑛)-bit messages
• synchronous rounds

Previous work

•The minimum spanning tree (MST) problem is well-
studied in the CONGEST model.

•Takes ෨𝑂(𝐷 + 𝑛) rounds (𝐷 = diameter) [Kutten and
Peleg, 95]

10

Unweighted 𝑘-ECSS

rounds approximation

𝑘 ෨𝑂(𝑘(𝐷 + 𝑛)) 2 Thurimella, 95

𝑘 = 2 𝑂(𝐷) 2 Censor-Hillel
and Dory, 17

11

Unweighted 𝑘-ECSS

𝑘 = 3 𝑂(𝐷log3𝑛) 𝑂(log 𝑛)

This work

12

rounds approximation

𝑘 ෨𝑂(𝑘(𝐷 + 𝑛)) 2 Thurimella, 95

𝑘 = 2 𝑂(𝐷) 2 Censor-Hillel
and Dory, 17

Weighted 𝑘-ECSS

rounds approximation

𝑘 𝑂(𝑘𝑛𝐷) 𝑂(log 𝑘) Nutov and
Sadeh, 2009

𝑘 = 2 𝑂(𝑛) 3 Censor-Hillel and
Dory, 17

13

Weighted 𝑘-ECSS

𝑘 = 2 ෨𝑂(𝐷 + 𝑛) 𝑂(log 𝑛)

𝑘 ෨𝑂(𝑘𝑛) 𝑂(𝑘 log 𝑛)

This work

14

rounds approximation

𝑘 𝑂(𝑘𝑛𝐷) 𝑂(log 𝑘) Nutov and
Sadeh, 2009

𝑘 = 2 𝑂(𝑛) 3 Censor-Hillel and
Dory, 17

Our Results

rounds approximation

Weighted 2-ECSS ෨𝑂(𝐷 + 𝑛) 𝑂(log 𝑛)

Weighted 𝑘-ECSS ෨𝑂(𝑘𝑛) 𝑂(𝑘 log 𝑛)

Unweighted 3-ECSS 𝑂(𝐷log3𝑛) 𝑂(log 𝑛)

15

General structure

•We augment the connectivity gradually

𝑘 = 0

16

General structure

•We augment the connectivity gradually

𝑘 = 1

17

General structure

•We augment the connectivity gradually

18

𝑘 = 2

General structure

•We augment the connectivity gradually

19

𝑘 = 3

𝐴𝑢𝑔𝑘

The input:

•𝑘-edge-connected graph 𝐺 = (V, E),

• 𝑘 − 1 -ECSS 𝐻

The output:

Minimum weight set of edges 𝐴 ⊆ 𝐸, such that

𝐻 ∪ 𝐴 is 𝒌-edge-connected.

20

𝐴𝑢𝑔𝑘

𝐴𝑖 = 𝜶𝒊-approximation algorithm for 𝐴𝑢𝑔𝑖
for 1 ≤ 𝑖 ≤ 𝑘

σ𝜶𝒊 -approximation algorithm for 𝑘-ECSS

21

•An edge 𝑒 covers a cut C in 𝐻, if (𝐻\C) ∪ 𝑒 is
connected

Solving 𝐴𝑢𝑔𝑘

22

•An edge 𝑒 covers a cut C in 𝐻, if (𝐻\C) ∪ 𝑒 is
connected

Solving 𝐴𝑢𝑔𝑘

23

•An edge 𝑒 covers a cut C in 𝐻, if (𝐻\C) ∪ 𝑒 is
connected

Solving 𝐴𝑢𝑔𝑘

24

𝑒

•An edge 𝑒 covers a cut C in 𝐻, if (𝐻\C) ∪ 𝑒 is
connected

•To solve 𝐴𝑢𝑔𝑘 our goal is to cover all cuts of size

(𝑘 − 1) in 𝐻

Solving 𝐴𝑢𝑔𝑘

25

𝑒

•For an edge 𝑒, let 𝐶𝑒 be all the cuts of size (𝑘 − 1)
in 𝐻 covered by 𝑒

•The cost-effectiveness of 𝑒 is

𝜌 𝑒 =
|𝐶𝑒|

𝑤(𝑒)

Cost-effectiveness

26

Sequential Greedy Algorithm

•At each step, add to the augmentation the edge
with maximum cost-effectiveness.

•Continue until all the cuts of size (𝑘 − 1) are
covered.

Gives an 𝑂 log 𝑛 -approximation

27

Distributed Algorithm – take 1

•At each step, add to the augmentation the edge
with maximum cost-effectiveness.

•Continue until all the cuts of size (𝑘 − 1) are
covered.

28

Distributed Algorithm – take 2

•At each step, add to the augmentation all the
edges with maximum cost-effectiveness.

•Continue until all the cuts of size (𝑘 − 1) are
covered.

29

•We would like to add edges simultaneously.

•How to break the symmetry?

•How to compute cost-effectiveness?

Distributed Algorithm

30

•A cut = a tree edge

2-ECSS

31

•A cut = a tree edge

2-ECSS

32

•A cut = a tree edge

2-ECSS

𝑒

33

𝑢

𝑣

•A cut = a tree edge

2-ECSS

𝑒

34

𝑢

𝑣

The Algorithm

•At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

• Each candidate edge chooses a random number
𝑟 ∈ [0,1].

• Each uncovered tree edge votes to the first
candidate that covers it.

•An edge is added to the augmentation if it gets at

least
𝟏

𝟖
of the votes of the tree edges it covers.

•We continue until all tree edges are covered.

35

The Algorithm

•At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

• Each candidate edge chooses a random number
𝑟 ∈ [0,1].

• Each uncovered tree edge votes to the first
candidate that covers it.

•An edge is added to the augmentation if it gets at

least
𝟏

𝟖
of the votes of the tree edges it covers.

•We continue until all tree edges are covered.

36

The Algorithm

•At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

• Each candidate edge chooses a random number
𝑟 ∈ [0,1].

• Each uncovered tree edge votes to the first
candidate that covers it.

•An edge is added to the augmentation if it gets at

least
𝟏

𝟖
of the votes of the tree edges it covers.

•We continue until all tree edges are covered.

37

The Algorithm

•At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

• Each candidate edge chooses a random number
𝑟 ∈ [0,1].

• Each uncovered tree edge votes to the first
candidate that covers it.

•An edge is added to the augmentation if it gets at

least
𝟏

𝟖
of the votes of the tree edges it covers.

•We continue until all tree edges are covered.

38

The Algorithm

•At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

• Each candidate edge chooses a random number
𝑟 ∈ [0,1].

• Each uncovered tree edge votes to the first
candidate that covers it.

•An edge is added to the augmentation if it gets at

least
𝟏

𝟖
of the votes of the tree edges it covers.

•We continue until all tree edges are covered.

39

The Algorithm

•At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

• Each candidate edge chooses a random number
𝑟 ∈ [0,1].

• Each uncovered tree edge votes to the first
candidate that covers it.

•An edge is added to the augmentation if it gets at

least
𝟏

𝟖
of the votes of the tree edges it covers.

•We continue until all tree edges are covered.

40

•Gives an 𝑂 log 𝑛 -approximation

•The number of iterations is 𝑂 log2𝑛

•How to implement each iteration?

41

The Algorithm

The Algorithm

•At each step, find all the edges with maximum
cost-effectiveness, they are the candidates.

• Each candidate edge chooses a random number
𝑟 ∈ [0,1].

• Each uncovered tree edge votes to the first
candidate that covers it.

•An edge is added to the augmentation if it gets at

least
𝟏

𝟖
of the votes of the tree edges it covers.

•We continue until all tree edges are covered.

42

•We need to do many global computations in
parallel: computing cost-effectiveness, computing
the number of votes…

•To achieve this, we decompose the tree into
fragments, following a decomposition presented for
solving the fault-tolerant MST problem [Ghaffari
and Parter, 2016].

43

The Algorithm

Conclusion

•𝑂 𝐷 + 𝑛 log2𝑛 -round, 𝑂 log 𝑛 -approximation

for 2-ECSS

𝑘 = 2

44

What about minimum 𝑘-ECSS?

•Now the cost-effectiveness of an edge depends on
the number of cuts it covers.

•How to compute cost-effectiveness?

•How to break the symmetry?

45

3-ECSS

•To compute cost-effectiveness, we use the cycle
space sampling technique [Pritchard and Thurimella,

2011]

•We give the edges of the graph labels that allow to
detect cuts of size 2 efficiently.

46

3-ECSS

A 2-edge-connected subgraph H

47

3-ECSS

𝑟1

𝑟2

𝑟3

Each non-tree edge chooses a random label

48

3-ECSS

𝑟1 𝑟1

𝑟1

𝑟2

𝑟2

𝑟3
𝑟2⨁𝑟3

𝑟2⨁𝑟3

𝑟1⨁𝑟2

The label of a tree edge is the xor of non-tree edges that
cover it

49

3-ECSS

𝑟1 𝑟1

𝑟1

𝑟2

𝑟2

𝑟3
𝑟2⨁𝑟3

𝑟2⨁𝑟3

𝑟1⨁𝑟2

Two edges
define a cut

⇔
They have the

same label

50

3-ECSS

𝑟1 𝑟1

𝑟1

𝑟2

𝑟2

𝑟3
𝑟2⨁𝑟3

𝑟2⨁𝑟3

𝑟1⨁𝑟2

51

Two edges define a cut ⇔ they have the same label

3-ECSS

𝑟1 𝑟1

𝑟1

𝑟2

𝑟2

𝑟3
𝑟2⨁𝑟3

𝑟2⨁𝑟3

𝑟1⨁𝑟2

Two edges define a cut ⇔ they have the same label

52

Detecting cut pairs

𝑟1 𝑟1

𝑟1

𝑟2

𝑟2

𝑟3
𝑟2⨁𝑟3

𝑟2⨁𝑟3

𝑟1⨁𝑟2

Two edges define a
cut in two cases:
• A tree edge and a

unique non-tree
edge that covers it

• Two tree edges
covered by the
exact same non-
tree edges

53

Detecting cut pairs

𝑟1 𝑟1

𝑟1

𝑟2

𝑟2

𝑟3
𝑟2⨁𝑟3

𝑟2⨁𝑟3

𝑟1⨁𝑟2

Two edges define a
cut in two cases:
• A tree edge and a

unique non-tree
edge that covers it

• Two tree edges
covered by the
exact same non-
tree edges

54

Detecting cut pairs

𝑟1 𝑟1

𝑟1

𝑟2

𝑟2

𝑟3
𝑟2⨁𝑟3

𝑟2⨁𝑟3

𝑟1⨁𝑟2

Two edges define a
cut in two cases:
• A tree edge and a

unique non-tree
edge that covers it

• Two tree edges
covered by the
exact same non-
tree edges

55

Computing cost-effectiveness

𝑟1 𝑟1

𝑟1

𝑟2

𝑟2

𝑟3
𝑟2⨁𝑟3

𝑟2⨁𝑟3

𝑟1⨁𝑟2

𝑟4

Assume we add a new edge 𝑒 with the label 𝑟4

56

Computing cost-effectiveness

𝑟1 𝑟1⨁𝑟4

𝑟1

𝑟2

𝑟2

𝑟3𝑟2⨁𝑟3⨁𝑟4

𝑟2⨁𝑟3

𝑟1⨁𝑟2

𝑟4

It changes the labels of tree edges it covers

57

Computing cost-effectiveness

𝑟1 𝑟1⨁𝑟4

𝑟1

𝑟2

𝑟2

𝑟3𝑟2⨁𝑟3⨁𝑟4

𝑟2⨁𝑟3

𝑟1⨁𝑟2

𝑟4
𝑒 covers all the
cut pairs 𝑓, 𝑓′

where exactly
one of 𝑓, 𝑓′ is in
the tree path
covered by 𝑒

58

Computing cost-effectiveness

𝑟1 𝑟1⨁𝑟4

𝑟1

𝑟2

𝑟2

𝑟3𝑟2⨁𝑟3⨁𝑟4

𝑟2⨁𝑟3

𝑟1⨁𝑟2

𝑟4
𝑒 covers all the
cut pairs 𝑓, 𝑓′

where exactly
one of 𝑓, 𝑓′ is in
the tree path
covered by 𝑒

59

Computing cost-effectiveness

𝑟1 𝑟1⨁𝑟4

𝑟1

𝑟2

𝑟2

𝑟3𝑟2⨁𝑟3⨁𝑟4

𝑟2⨁𝑟3

𝑟1⨁𝑟2

𝑟4
𝑒 covers all the
cut pairs 𝑓, 𝑓′

where exactly
one of 𝑓, 𝑓′ is in
the tree path
covered by 𝑒

60

3-ECSS

•We compute cost-effectiveness in 𝑂(𝐷) rounds

•We show a mechanism for symmetry breaking that
takes 𝑂 log3 𝑛 iterations

Conclusion:

𝑂(𝐷 log3 𝑛)-round 𝑂(log 𝑛)-approximation for
unweighted 3-ECSS

61

What about minimum 𝑘-ECSS?

•Now the cost-effectiveness of an edge depends on
the number of cuts it covers.

•How to compute cost-effectiveness?

•How to break the symmetry?

62

Computing cost-effectiveness

•Minimum 𝑘-edge-connected subgraphs are
sparse.

• In 𝑂 𝑘𝑛 rounds we can learn the whole
subgraph 𝐻 and compute cost-effectiveness.

63

Symmetry Breaking

•Candidates = edges with maximum cost-
effectiveness

•We would like to add small number of candidates
that cover many cuts.

64

Symmetry Breaking

deg 𝐶 = number of candidates that cover the cut 𝐶

Intuition: if each of the candidates that covers 𝐶 is

added with probability
1

deg(𝐶)
we add one candidate

to cover 𝐶 in expectation

65

Symmetry Breaking

Idea: Candidates are added to the augmentation with
probability 𝑝

• Initially 𝑝 =
1

𝑚

• Every 𝑂 log𝑛 iterations 𝑝 is increased by a factor of 2

Claim: when 𝑝 =
1

2𝑖
for all cuts 𝐶, deg(𝐶) ≤ 2𝑖 w.h.p

The number of iterations is 𝑂(log3𝑛).

66

Summary

rounds approximation

Weighted 2-ECSS ෨𝑂(𝐷 + 𝑛) 𝑂(log 𝑛)

Weighted 𝑘-ECSS ෨𝑂(𝑘𝑛) 𝑂(𝑘 log 𝑛)

Unweighted 3-ECSS 𝑂(𝐷log3𝑛) 𝑂(log 𝑛)

67

Open questions

Weighted 𝒌-ECSS

There is a sublinear algorithm for 𝒌 = 𝟐, what about 𝑘 > 2?

Unweighted 𝒌-ECSS

There is an 𝑂(𝐷log3𝑛)-round algorithm for 𝒌 = 𝟑, what
about 𝑘 > 3?

68

